Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T21:08:59.089Z Has data issue: false hasContentIssue false

Dispersion analysis of the solid helical pulse-forming line

Published online by Cambridge University Press:  12 May 2015

Langning Wang*
Affiliation:
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Jinliang Liu
Affiliation:
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
*
Address correspondence and reprint requests to: Langning Wang, College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, People's Republic of China. E-mail: [email protected]

Abstract

In this paper, a solid helical pulse-forming line (HPFL) is described. The electromagnetic (EM) dispersion theory is used to calculate the important parameters of the HPFL based on tape helix model. Dispersion effects on the important EM parameters of HPFL, such as electric length and characteristic impedances, are analyzed. When Al2O3 ceramic is applied to be the dielectric in the HPFL, the pulse width of the HPFL is calculated nearly 50 ns only with the length of 305 mm. EM field simulation can draw the dispersion curve of the HPFL directly, which can describe the dispersion effect on the electric length of HPFL. Furthermore, the EM field simulation and experiments are carried out to verify the theoretical calculations of the pulse wide and characteristic impedances. Both simulation and experimental results can prove the EM analyses and calculations in this paper.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, G.H., Zhang, W.J., Liu, X.Y. & Zhou, C.R. (2011). Preparation and properties of strontium barium niobate based glass-ceramics for energy storage capacitors. J. Electroceram. 27, 7882.CrossRefGoogle Scholar
Chung, U., Elissalde, C., Maglione, M., Estournès, C., Pate, M. & Ganne, J.P. (2008). Low-losses, highly tunable Ba 0.6 Sr 0.4 TiO3/MgO composite. Appl. Phys. Lett. 92, 042902042902.CrossRefGoogle Scholar
D'Agostino, S., Emma, F. & Paoloni, C. (1998). Accurate analysis of helix slow-wave structures. IEEE Trans. Electron Devices 45, 16051613.CrossRefGoogle Scholar
Decup, M., Malec, D. & Bley, V. (2009). Impact of a surface laser treatment on the dielectric strength of α-alumina. J. Appl. Phys. 106, 094103094104.CrossRefGoogle Scholar
Dialetis, D., Chernin, D., Antonsen, T.M. & Levush, B. (2009). Accurate representation of attenuation in helix TWT simulation codes. IEEE Trans. Electron Devices 56, 935944.CrossRefGoogle Scholar
Gundersen, M., Dickens, J. & Nunnally, W. (2003). Compact, portable pulsed power: physics and applications. 14th IEEE Int. Pulsed Power Conf. 1, 912.Google Scholar
Jiang, W., Oshima, N., Yokoo, T., Yatsui, K., Takayama, K., Wake, M., Shimizu, N. & Tokuchi, A. (2005). Development of repetitive pulsed power generators using power semiconductor devices. IEEE Pulsed Power Conf., pp. 11671172.CrossRefGoogle Scholar
Jiang, W., Yatsui, K., Takayama, K., Akemoto, M., Nakamura, E., Shimizu, N., Tokuchi, A., Rukin, S., Tarasenko, V. & Panchenko, A. (2004). Compact solid-state switched pulsed power and its applications. Proc. IEEE 92, 11801196.CrossRefGoogle Scholar
Johnson, H.R., Everhart, T.E. & Siegman, A.E. (1956). Wave propagation on multifilar helices. IEEE Trans. Dielectr. Electr. 2, 1824.Google Scholar
Joler, M., Christodoulou, C., Gaudet, J., Schamiloglu, E., Schoenbach, K., Joshi, R. & Laroussi, M. (2002). Study of high energy storage Blumlein transmission lines as high power microwave drivers (No. 2002-01-3179). SAE Technical Paper.Google Scholar
Jue, W., Ping, Y. & Bin, L. (2007). High energy density dielectrics for Transmission Line. 34th IEEE Int. Conf. on Plasma Science, pp. 388–388.CrossRefGoogle Scholar
Kartikeyan, M.V., Sinha, A.K., Bandopadhyay, H.N. & Venkateswarlu, D.S. (1999). Effective simulation of the radial thickness of helix for broad band, practical TWT's. IEEE Trans. Plasma Sci. 27, 11151123.CrossRefGoogle Scholar
Kino, G.S. & Paik, S.F. (1962). Circuit theory of coupled transmission systems. J. Appl. Phys. 33, 30023008.CrossRefGoogle Scholar
Kompfner, R. (1947). Traveling wave tube as amplifier at microwaves. Proc. IRE 35, 124127.CrossRefGoogle Scholar
Korioth, J.L. (1998). A computational analysis of stacked Blumlein pulse generators. Ph.D. Thesis, University of Texas.Google Scholar
Korovin, S.D., Gubanov, V.P., Gunin, A.V., Pegel, I.V. & Stepchenko, A.S. (2001). Repetitive nanosecond high-voltage generator based on spiral forming line. IEEE Int. Pulsed Power Conf., Vol. 2, pp. 12491251.Google Scholar
Liu, J., Li, C., Zhang, J., Li, S. & Wang, X. (2006). A spiral strip transformer type electron-beam accelerator. Laser Part. Beams 24, 355358.CrossRefGoogle Scholar
Liu, J., Yin, Y., Ge, B., Cheng, X., Feng, J., Zhang, J. & Wang, X. (2007). A compact high power pulsed modulator based on spiral Blumlein line. Rev. Sci. Instrum. 78, 103302.CrossRefGoogle ScholarPubMed
Neusel, C. & Schneider, G.A. (2014). Size-dependence of the dielectric breakdown strength from nano-to millimeter scale. J. Mech. Phys. Solids 63, 201213.CrossRefGoogle Scholar
Nunnally, W.C., Lewis, R., Allen, F., Hawkins, S., Holmes, C., Sampayan, S. & Caporaso, G. (2005). Experiments with UV laser triggered spark gaps in a stacked Blumlein system. 15th IEEE Int. Pulsed Power Conf., pp. 1376–1381.CrossRefGoogle Scholar
Scotto, M.J. & Parzen, P. (1956). The electronic theory of tape-helix traveling-wave structures. IRE Trans. Electron Devices 3, 160160.CrossRefGoogle Scholar
Sharma, S.K., Deb, P., Shukla, R., Prabaharan, T. & Shyam, A. (2011). Compact pulse forming line using barium titanate ceramic material. Rev. Sci. Instrum. 82, 115102.CrossRefGoogle Scholar
Stark, L. (1954). Lower modes of a concentric line having a helical inner conductor. J. Appl. Phys. 25, 11551162.CrossRefGoogle Scholar
Su, J., Zhang, X., Li, R., Zhao, L., Sun, X., Wang, L., Zeng, B., Cheng, J., Wang, Y., PENG, J., & Song, X. (2014). An 8-GW long-pulse generator based on Tesla transformer and pulse forming network. Rev. Sci. Instrum. 85, 063303.CrossRefGoogle ScholarPubMed
Teranishi, T., Nojima, K., Motegi, S., Murase, H.H., Ohshima, I., Shidara, T., Akernoto, M., Takeda, S. & Takata, K. (1991). A 600 kV Blumlein modulator for an X-band klystron. 8th IEEE Int. Pulsed Power Conf., pp. 315–318.CrossRefGoogle Scholar
Tien, P.K. (1953). Traveling-wave tube helix impedance. Proc. IRE 41, 16171623.CrossRefGoogle Scholar
Wang, L., Liu, J. & Feng, J. (2015). A compact 100 kV high voltage glycol capacitor. Rev. Sci. Instrum. 86, 014701.CrossRefGoogle ScholarPubMed
Wang, S., Shu, T. & Yang, H. (2013 a). Note: A 3-stage stacked Blumlein using ceramic for energy storage. Rev. Sci. Instrum. 84, 026104.CrossRefGoogle ScholarPubMed
Wang, S., Shu, T., Zhang, J., Zhang, Z. & Yang, H. (2013b). Breakdown characteristics of Niobate glass-ceramic under pulsed condition. IEEE Trans. Dielectr. Electr. Insul. 20, 275280.CrossRefGoogle Scholar
Xia, L., Zhang, H., Shi, J., Zhang, H., Deng, J., Liu, H. & Cao, M. (2008). A compact, portable pulse forming line. Rev. Sci. Instrum. 79, 086113.CrossRefGoogle ScholarPubMed
Yang, H., Xu, J., Zhang, J., Zhong, H., Wang, Y., Fan, Y., Zhang, Z., Yang, J., Luo, L. & Zhao, Y. (2009). Experiments of a 30 GW, 100 ns Compact E-beam accelerator. 2009 IET European Pulsed Power Conf., pp. 1–4.Google Scholar
Zhang, H.B., Yang, J.H., Gao, F. & Lin, J.J. (2013). Experimental study of the breakdown characteristic of glycerol as energy storage medium in pulse forming line. 2013 IEEE Conf. on Electrical Insulation and Dielectric Phenomena (CEIDP), pp. 850–853.CrossRefGoogle Scholar
Zhang, Q., Wang, L., Luo, J., Tang, Q. & Du, J. (2010). Ba0. 4Sr0. 6TiO3/MgO composites with enhanced energy storage density and low dielectric loss for solid-state pulse-forming line. Int. J. Appl. Ceram. Technol. 7(s1), E124E128.CrossRefGoogle Scholar
Zhang, Y. & Liu, J.L. (2012). Impedance matching condition analysis of the multi-filar tape-helix Blumlein PFL with discontinuous dielectrics. Laser Part. Beams 30, 639650.CrossRefGoogle Scholar
Zhang, Y., Liu, J., Fan, X., Zhang, H., Wang, S. & Feng, J. (2011). Characteristic impedance and capacitance analysis of Blumlein type pulse forming line of accelerator based on tape helix. Rev. Sci. Instrum. 82, 104701.CrossRefGoogle ScholarPubMed
Zhang, Y., Liu, J., Wang, S., Fan, X., Zhang, H. & Feng, J. (2012a). Effects of dielectric discontinuity on the dispersion characteristics of the tape helix slow-wave structure with two metal shields. Laser Part. Beams 30, 329339.CrossRefGoogle Scholar
Zhang, Y., Liu, J.L. & Feng, J.H. (2012b). Effects of dispersion on electromagnetic parameters of tape-helix Blumlein pulse forming line of accelerator. The Eur. Phys. J. Appl. Phys. 57, 30904.CrossRefGoogle Scholar