Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T17:37:32.043Z Has data issue: false hasContentIssue false

Difference between relativistic petawatt-picosecond laser-plasma interaction and subrelativistic plasma-block generation

Published online by Cambridge University Press:  05 December 2005

HEINRICH HORA
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia

Abstract

Some preliminary views are presented to the topic “Fast High Density Plasma Blocks Driven by Picosecond Terawatt Lasers” of the UWS-International Workshop 1–4 December 2004 in Sydney, Australia, underlining the motivation to explain the difference between the relativistic and the subrelativistic effects of ps-laser pulse interaction with plasma at powers above TW. This refers to specifically selected experimental and theoretical presentations at the workshop containing results for explaining the differences but also the important applications for studies on the fast ignitor scheme for application on nuclear fusion energy. One of the aims with relativistic proton beams is to realize conditions of spark ignition, while the subrelativistic case implies the generation of fast plasma blocks eventually with the possibility to ignite a fusion flame in uncompressed solid DT fuel for a power station with high efficiency.

Type
Workshop on Fast High Density Plasma Blocks Driven By Picosecond Terawatt Lasers
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azechi, H., Jitsuno, T., Kanabe, M., Mima, K., Miyanaga, N, Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norreys, P.A., Setsuhara, Y., Takagi, M., Yamanaka M., &Yamanaka, C. (1991). High-density compression experiments at ILE, Osaka. Laser Part. Beams 9, 167208.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401409.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys., P., Wolowski, J., Hora, H, Kraska, J., Laska, J. & Rohlena, R. (2004b). Production of ultrahigh ion current densities at Skin-Layer subrelativistic laser-plasma interaction. Plasma Phys. Contr. Fusion 46, B541B555.Google Scholar
Badziak, J., Glowacz, S.G., Jablonski, S., Parya, P., Wolowsk, J. & Hora, H. (2004a). Production of ultrahigh-current-density ion beams by short-pulse skin-layer laser-plasma interaction. Appl. Phys. Lett. 85, 30413043.Google Scholar
Badziak, J., Hora, H., Woryna, S., Jablonski, S., Laska, L., Parys, P., Rohlena, K. & Wolowski, J. (2003). Experimental evidence of differences in properties of fast ion fluxes form short-pulse and long-pulse laser-plasma interaction. Phys. Lett. A 315, 452457.Google Scholar
Badziak, J., Kozlov, A.A., Makowski, J., Parys., P., Ryc, L., Wolowski, J., Woryna, E. & Vankov A..B. (1999). Investigation of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams 17, 323329.Google Scholar
Balakirev, V.A., Kara, I.V., Karas, V.I., Levchenko, V.D. & Bornatici, M. (2004). Charged particle acceleration by an intense wake-field excited in plasmas by either laser pulse or relativistic electron bunch. Laser Part. Beams 22, 383392.Google Scholar
Bobin, J.L. (1971). Flame propagation and overdense heating in laser created plasma. Phys. Fluids 14, 23412356.Google Scholar
Bobin, J.L. (1974). Laser Interaction and Related Plasma Phenomena (Schwarz, H. and Hora, H., Eds.). New York: Plenum.
Boody, F.P., Höpel, R., Hora, H. & Kelly, J.C. (1996). Laser-driven ion source for reduced-cost implantation of metal ions for strong reduction of dry friction and increased durability. Laser Part. Beams 14, 443448.Google Scholar
Brueckner, K.A. & Jorna, S. (1974). Laser driven fusion. Rev. Mod. Phys. 46, 325367.Google Scholar
Campbell, E.M. (1992). The physics of megajoule, large-scale, and ultrafast short-scale laser plasmas. Phys. Fluids B4, 37813799.Google Scholar
Campbell, E.M., Baldwin, D. & Blue, N. (2000). Congratulation message for Professor Chiyoe Yamanaka. In Light and Shade: Festschrift to the 77th Birthday of Chiyoe Yamanaka. Osaka University: ILE, pp. 470472.
Campbell, E.M., Holmes, N.C., Libby, B.S., Remington, B.A. & Teller, E. (1997). The evolution of high-energy-density physics: From nuclear testing to the superlasers. Laser Part. Beams 15, 607618.Google Scholar
Cang, Y., Osman, F., Hora, H., Zhang, J., Badziak, J., Wolowski, J., Jungwirth, K., Rohlena, K., Ullschmied, J. (2005). Computations for nonlinear force driven plasma blocks by picosecond laser pulses for fusion. J. Plasma Phys 71, 3551.Google Scholar
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 413422.Google Scholar
Clark, R., Hora, H., Ray, P.S. & Sir Ernest Titterton. (1978). Evaluation of cross sections of the Li(d,α)α reaction. Phys. Rev. C 18, 11271132.Google Scholar
Clark, F.L., Krushelnik, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor A.E. (2001). Energetic heavy ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 16541657.Google Scholar
Cockroft, J., et al. (1933). Proc. Roy. Soc. London A 137, 229.
Deutsch, C. (2004). Penetration of intense charge particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Ehler, A.W. (1975). High-energy ions from a CO2 laser-produced plasma. J. Appl. Phys. 46, 24642467.Google Scholar
Eliezer, S. & Hora, H. (1989). Double layers in laser-produced plasmas. Phys. Rep. 172, 339406.Google Scholar
Esarey, E., Sprangle, P., Kroll, N.M. & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quan. Electr. QE-33, 18791891.Google Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003.Google Scholar
Gabor, D. (1953). Collective model for particle interaction in plasmas. Proc. Royal Soc. London A 213, 7392.Google Scholar
Gitomer, S.J., Jones, R.D., Begay, F., Ehler, A.W., Kephart, J.F. & Kristal, R. (1986). Fast ions and hot-electrons in the laser-plasma interaction. Phys. Fluids 29, 26792688.Google Scholar
Greschik, F. & Kull, H.-J. (2004). Two-dimensional PIC simulation of atomic clusters in intense laser fields. Laser Part. Beams 22, 137147.Google Scholar
Hain, S. & Mulser, P. (2001). Fast ignition without hole boring. Phys. Rev. Lett. 86, 10151018.Google Scholar
Hartemann, F.V. (2002). Hugh Field Electrodynamics. Baton Rough, FL: CRC Press.
Hartemann, F.V., Van Meter, J.R., Troha, A.L., Landahl, E.C., Luhmann, N.C., Baldis, H.A., Gupta, A. & Kerman, A.K. (1998). Three-dimensional relativistic electron scattering in an ultrahigh-intensity laser focus. Phys. Rev. E 58, 50015012.Google Scholar
Haseroth, H. & Hora, H. (1996). Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources. Laser Part. Beams 14, 393.Google Scholar
Häuser, T., Scheid. W., &Hora, H. (1994). Acceleration of electrons by intense laser pulses in vacuum. Phys. Lett. A 186, 189.Google Scholar
Häuser, T., Scheid, W. & Hora, H. (1992). Theory of ions emitted in a plasma by relativistic self-focusing of laser beams. Phys. Rev. A 45, 1278.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hora, H. (1969). Self-focusing of laser beams in a plasma by ponderomotive forces. Zeitschrift d. Physik 226, 156159.Google Scholar
Hora, H. (1973). Relativistic oscillation of charged particles in laser fields and pair production, Nature (London) Phys. Soc. 243, 34.Google Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.Google Scholar
Hora, H. (1983). Interpenetration burn for controlled inertial confinement fusion driven by nonlinear laser forces. Atomkernenergie 42, 710.Google Scholar
Hora, H. (1985). The transient electrodynamic forces at laser-plasma Interaction. Phys. Fluids 28, 37053706.Google Scholar
Hora, H. (1988). Particle acceleration by superposition of frequency-controlled laser pulses. Nature 333, 337338.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.
Hora, H. (2000). Laser Plasma Physics, Forces and the Nonlinearity Principle. Bellingham WA: SPIE Press.
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser plasma interaction II. Czech. J. Phys. 53, 199217.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Hora, H. & Ray, P.S. (1978). Increased nuclear fusion yields of inertial confined dt plasma due to reheat. Zeitschrift f. Naturforschung 33A, 890894.Google Scholar
Hora, H. & Wang, L. (2001). Comments on measurements by J. Zhang et al., Summit on Plasma Physics, Feb., Islamabad.
Hora, H., Azechi, H., Kitagawa, Y., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Takabe, K., Yamanaka, M. & Yamanaka, C. (1998). Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions. J. Plasma Phys. 60, 743760.Google Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikowa, B., Kraska, J., Laska, L., Parys, P., Perina, V., Pfeifer, K. & Rohlena, J. (2002). Effects of ps and ns. laser pulses for giant ion source. Opt. Commun. 207, 333338.Google Scholar
Hora, H., Heolss, M., Scheid, W., Wang, J.X., Ho, Y.K., Osman, F. & Castillo R. (2000). Principle of high accuracy for the nonlinear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities. Laser Part. Beams 18, 135144.Google Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers in nonlinear force produced cavitons at laser-plasma interaction. Phys. Rev. Lett. 53, 16501652.Google Scholar
Hora, H., Miley, G.H. & Osman, F. (2005). Boltamann equilibrium o endothermic heavy nuclear synthesis in the universe and a quark relation to the magic numbers. Astrophys. Space Sci. 298 (in print).Google Scholar
Hora, H., Miley, G.H., Toups, P., Evans, P., Osman, F., Castillo, R., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Yamanaka, C. & Yamanaka, T. (2003). Single event high compression inertial confinement of low temperature compared with the fast ignitor. J. Plasma Phys. 69, 413430.Google Scholar
Hora, H., Min, Gu, Eliezer, S., Lalousis, P., Pease, R.S. & Szichman, H. (1989). On surface tension in plasmas. IEEE Trans. Plasma Sc. PS-17, 284289.Google Scholar
Hora, H., Osman, F., Castillo, R., Collins, M., Stait-Gardener, T., Wai-Kim, Chan, Hoelss, M., Scheid, W., Wang, Jia-Zhang & Ho, Yu-Kin (2002a). Laser-generated pair production and Hawking-Unruh radiation. Laser Part. Beams 20, 7978.Google Scholar
Hora, H., Osman, F., Höpfl, R., Badziak, J., Parys, P., Wolowski, J., Skala, J., Ullschmied, J., Wolowski, J., Woryna, E., Woryna, W., Boody, F., Jungwirth, K., Kralikowa, B., Kraska, J., Laska, L., Pfeifer, M., Rohlena, K., Skala, J. & Ullschmied J. (2002b). Skin depth theory explaining anomalous picosecond laser plasma interaction. Czech. J. Phys. 52, D349D361.Google Scholar
Jones, D.A. Kane, E.L., Lalousis, P, Wiles, P.R., &Hora, H. (1982). Density modification and energetic ion production at relativistic self-focusing of laser beams in plasmas. Phys. Fluids 25, 22952302.Google Scholar
Joshi, C. & Katsoulease, T. (2003). Plasma accelerators at the energy frontier and on tabletops. Physics Today 56, 47.Google Scholar
Katsouleas, T. (2004). Progress on plasma accelerators: from the energy frontier to tabletops. Plasma Phys. Contr. Fusion 46, B575.Google Scholar
Key, H.M. (2001). Fast track to fusion energy. Nature 412, 775776.Google Scholar
Kitagawa, Y., Matsumoto, T., Minamihata, T., Sawai, K., Matsuo, K., Mima, K., Nishihara, K., Azechi, H., Tanaka, K.A., Takabe, H. & Nakai, S. (1992). Beat-wave excitation of plasma-wave and observation of accelerated electrons. Phys. Rev. Letters 68, 4851.Google Scholar
Kodama & Fast Ignitor Consortium (2002). Fast heating scalable to laser fusion ignition. Nature 418, 933943.Google Scholar
Kruer, W.L. (1988). Physics of Laser Plasma Interactions. Redwood City, CA: Addison-Wesley.
Ledingham, K.W.D., Spencer, I., Mccanny, T., Singhal, R.P., Santala, M.I.K., Clark, E., Watts, I., Beg, F.N., Zepf, M., Krushelnik, K., Tatarakis, M., Dangor, A.E., Norreys, P.A., Allott, R., Neely, D., Clark, R.J., Machacek, A.C., Wark, J.S., Cresswell, A.J., Sanderson, D.C.W. & Magill, J. (2000). Photonuclear physics when a multiterawatt laser pulse interacts with solid targets. Phys. Rev. Lett. 84, 899902.Google Scholar
Leemans, W.P., Rodgers, D., Catravas, P.E., Geddes, C.G.R., Fubiani, G., Esarey, E., Shadwick, B.A., Donahue, R. & Smith, A. (2001). Gamma-neutron activation experiments using laser wakefield accelerators. Phys. Plasmas 8, 25102516.Google Scholar
Lefebvre, E., Malka, G. & Miquel, J.L. (1998). Phys. Rev. Lett. 80, 1352.
Leon, P.T., Eliezer, S., Martinez-Val, S. & Piera, M. (2001). Fusion burning waves in degenerate plasmas. Phys. Lett. A289, 135.Google Scholar
Li, X.Z., Tian, J., Mei, M.Y. & Li, C.X. (2000). Phys. Rev. C61, 0246101.
Li, X.Z., Liu, B., Chen, S.I., Wei, Q.M. & Hora, H. (2004). Fusion cross-sections for inertial fusion energy. Laser Part. Beams 22, 469.Google Scholar
Limpouch, J., Klimo, O., Bina, V. & Kawata, S. (2004). Numerical studies on the ultrashort pulse K-α emission sources based on femtosecond laser-target interactions. Laser Part. Beams 22, 147156.Google Scholar
Magill, I., Schwoerer, H., Ewald, F., Galy, F., Schenkel, R. & Sauerbrey, R. (2003). Terawatt laser pulses for transmutation of long lived nuclear waste. Appl. Phys. B77, 387392.Google Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399.Google Scholar
Miley, G.H., Hora, H., Osman, F., Evans, P. & Toups, P. (2005). Single event laser fusion using ns-MJ laser pulses. Laser Part. Beams 23, 453460.Google Scholar
Miley, G.H. et al. (2004). SPIE Proc. 5448, 973.
Miley, G.H., et al. (2003). Inertial Fusion Science and Application (Hammel, B.A., et al., Eds.), p. 418. LaGrange, IL: American Nuclear Society.
Mourou, G. & Tajima, T. (2002). Ultraintense lasers and their applications. In Inertial Fusion Science and Applications 2001 (Tanaka, K.A., Meyerhofer, D.D. and Meyer-ter-Vehn, J., Eds.), p. 831839. Paris: Elsevier.
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems and prospectives. Laser Part. Beams 22, 512.Google Scholar
Mulser, P. & Schneider, R. (2004). On the inefficiency of hole boring in fast ignition. Laser Part. Beams 22, 157.Google Scholar
Nuckolls, J.L. & Wood, L. (2002). Future of Inertial Fusion Energy. Livermore, CA: Lawrence Livermore National Laboratory. Preprint, UCRL-JC-149860.
Oliphant, M.L.E., Harteck, P. & Lord Rutherford. (1934). Transmutation effects observed with heavy hydrogen. Proc. Roy. Soc. London A 144, 692714.Google Scholar
Osman, F., Ghahramann, N. & Hora, H. (2005). Debye sheath mechanism at laser plasma interaction and generalization to nuclear forces and quark-glucon plasma. Laser Part. Beams 23, 461466.Google Scholar
Osman, F., Beech, R. & Hora, H. (2004a). Solutions of the nonlinear paraxial equation due to laser-plasma interactions. Laser Part. Beams 22, 6974.Google Scholar
Osman, F., Castillo, R. & Hora, H. (1999). Relativistic and ponderomotive self-focusing at laser-plasma interaction. J. Plasma Phys. 61, 263273.Google Scholar
Osman, F., Hora, H., Cang, Y., Evans, P., Cao, L.H., Liu, H., He, X.T., Badziak, J., Parys, A.B., Wolowski, E., Woryna, E., Jungwirth, K., Kralikova, B., Krasla, J., Laska, J., Pfeifer, M., Rohlena, K., Skala, J. & Ullschmied, J. (2004b). Skin depth plasma front interaction mechanism with prepulse suppression to avoid relativistic self focusing for high gain laser fusion. Laser Part. Beams 22, 8388.Google Scholar
Perry, M.V. & Mourou, G. (1994). Terawatt to petawatt subpicosecond lasers. Science 264, 917924.Google Scholar
Roth, M., Cowan, T.E., Hunt, A.W., Johnson, J., Broen, S.P., Fountain, W., Hatchett, S.P., Henry, E.A., Key, M.H., Kuehl, T., Parnell, T., Pennington, D.W., Perry, M.D., Sangster, T.C., Christi, M., Singh, M., Snavely, R., Stoyer, M., Takahashi, Y. & Wilks, S.C. (2000). High-energy electron, positron, ion and nuclear spectroscopy in ultra-intense laser-solid experiments on the petawatt. In Inertial Fusion Science and Applications 1999 (Labaune, C., Hogan, W.J. & Tanaka, K.A., Eds.), pp. 10101015. Paris: Elsevier.
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.W., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M..D. & Powell, H. (2001). Fast ignition by intense laser accelerated proton beams. Phys. Rev. Lett. 86, 43643.Google Scholar
Sari, A.H., Osman, F., Ghoranneviss, M., Hora, H., Hopel, R., Benstetter, G. & Hantehzadeh, M.H. (2005). Application of laser driven fast high density plasma blocks for ion implantation. Laser Part. Beams 23, 467473.Google Scholar
Sauerbrey, R. (1996). Acceleration in femtosecond laser produced plasmas. Phys. Plasma 3, 47124716.Google Scholar
Schäfer, F.P. (1986). Appl. Phys. B39, 1.
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostity, S., Pirzadehi, P., Roth, M., Rosmej, F.B., Faenov, A.Ya., Pikuz, T.A., Tsigutkin, K., Maron, Y. & Tarhir, N.A. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from NHELIX laser system at GSI. Laser Part. Beams 23, 503511.Google Scholar
Scheid, W. & Hora, H. (1989). On Electron acceleration by plane transverse electromagnetic pulses in vacuum. Laser Part. Beams 7, 315332.Google Scholar
Schwoerer, H., Gibbon, P., Duesterer, S., Behrens, K., Ziener, C., Reich, C. & Sauerbrey, R. (2001). Phys. Rev. Lett. 86, 23172320.
Shorokhov, O. & Pukhov, A. (2004). Ion acceleration in overdense plasma by short laser pulse. Laser Part. Beams 22, 175.Google Scholar
Tabak, M., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high-gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Teubner, U., Bergmann, B., Van Wontergehm, B., Schäfer, F.P. & Sauerbrey, R. (1993). Angle dependent X-ray emission and resonance-absorption in a laser produced plasma generated by a high-intensity ultrashort pulse. Phys. Rev. Lett. 70, 794797.Google Scholar
Thomas, O. (2004). Planning of the acceleration after LHC. Phys. J. 3, 1415.Google Scholar
Umstadter, R. (1996). Terawatt lasers produce faster electron acceleration. Laser Focus 32, 101107.Google Scholar
Wägli, P. & Donaldson, Z. (1978). Phys. Rev. Lett. 40, 875878.
Wang, J.X., Ho, Y.K., Kong, Q., Zhu, L.J., Feng, J., Scheid, W. & Hora, H. (1998). Electron capture and violent acceleration by an extra-intense laser beam. Phys. Rev. E 58, 65766577Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hackett, S., Key, M.H., Pennington, D., Mckinnon, A. & Snavely, R.A. (2001). Phys. Plasmas 8, 542.
Wolowski, J. Badziak, F., Boody, B., Hora, H., Hnatowicz, V., Jungwirth, K., Kraska, J., Laska, L., Parys, P., Perina, V., Pfeifer, M., Rohlena, K., Ryc, L., Ullschmied, J., &Woryna, E. (2002). Fast ion emission from the plasma produced by the PALS laser system. Plasma Phy. Contr. Fusion 44, 12771283.Google Scholar
Wolowski, J., Badziak, J., Boody, B., Gammino, S., Hora, H., Jungwirth, K., Kaska, J., Laska, L., Parys, P., Pfeifer, M., Rohlena, K., Szydlowski, A., Torris, L., Ullschmied, J. & Woryna, E. (2003). Characteristics of ion emission from plasma produced by high-energy short-wavelength (438 nm) laser radiation. Plasma Phys.Contr. Fusion 45, 10871099.Google Scholar
Woryna, E., Wolowski, J., Kralikowa, B., Kraska, J., Laska, L., Pfeifer, M., Rohlena, K., Skala, J., Perina, V., Booday, F.P. & Hora, H. (2000). Laser produced ag ions for direct implantation. Rev. Sci. Instr. 71, 949951.Google Scholar
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wong, Lang, Li, Z.L., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-Ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev. E57, 37463752.Google Scholar