Published online by Cambridge University Press: 04 April 2003
The U.S. Heavy Ion Fusion Virtual National Laboratory is continuing research into ion sources and injectors that simultaneously provide high current (0.5–1.0 A) and high brightness (normalized emittance better than 1.0 π-mm-mr). The central issue of focus is whether to continue pursuing the traditional approach of large surface ionization sources or to adopt a multiaperture approach that transports many smaller “beamlets” separately at low energies before allowing them to merge. For the large surface source concept, the recent commissioning of the 2-MeV injector for the High Current eXperiment has increased our understanding of the beam quality limitations for these sources. We have also improved our techniques for fabricating large diameter aluminosilicate sources to improve lifetime and emission uniformity. For the multiaperture approach, we are continuing to study the feasibility of small surface sources and a RF-induced plasma source in preparation for beamlet merging experiments, while continuing to run computer simulations for better understanding of this alternate concept. Experiments into both architectures will be performed on a newly commissioned ion source test stand at Lawrence Livermore National Laboratory called STS-500. This stand test provides a platform for testing a variety of ion sources and accelerating structures with 500-kV, 17-μs pulses. Recent progress in these areas is discussed as well as plans for future experiments.