Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T19:50:01.695Z Has data issue: false hasContentIssue false

Design of a petawatt optical parametric chirped pulse amplification upgrade of the kilojoule iodine laser PALS

Published online by Cambridge University Press:  03 May 2013

Ondřej Novák*
Affiliation:
Institute of Physics, AS CR, v.v.i., Prague, Czech Republic Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
Martin Divoký
Affiliation:
Institute of Physics, AS CR, v.v.i., Prague, Czech Republic
Hana Turčičová
Affiliation:
Institute of Physics, AS CR, v.v.i., Prague, Czech Republic
Petr Straka
Affiliation:
Institute of Physics, AS CR, v.v.i., Prague, Czech Republic
*
Address correspondence and reprint requests to: Ondřej Novák, Institute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic. E-mail: [email protected]

Abstract

A design for generation of two ultra-high power laser beams, 130 TW and 1.4 PW, using a chain of optical parametric chirped pulse amplifiers, first pumped by a 10 Hz frequency doubled Nd:YAG laser, and later by the frequency tripled single-shot kilojoule level iodine laser Prague Asterix Laser System is presented. Expected enhancement of the parameters in the upgrade, besides the output power, are up to 1022 W/cm2 from 1016 W/cm2 in target intensity, and about 20 fs from 0.5 ns in pulse duration. Owing to the limited dimensions of the Prague Asterix Laser System building, the lay-out of the new equipment had to use only the left-over space in the laser hall.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barty, C.P.J., Key, M., Britten, J., Beach, R., Beer, G., Brown, C., Bryan, S., Caird, J., Carlson, T., Crane, J., Dawson, J., Erlandson, A.C., Fittinghoff, D., Hermann, M., Hoaglan, C., Iyer, A., Jones II, L., Jovanovic, I., Komashko, A., Landen, O., Liao, Z., Molander, W., Mitchell, S., Moses, E., Nielsen, N., Nguyen, H-H., Nissen, J., Payne, S., Pennington, D., Risinger, L., Rushford, M., Skulina, K., Spaeth, M., Stuart, B., Tietbohl, G. & Wattellier, B. (2004). An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments. Nucl. Fusion 44, S266S275.CrossRefGoogle Scholar
Baumhacker, H., Brederlow, G., Fill, E., Volk, R., Witkowski, S. & Witte, K.J. (1995). Layout and performance of the Asterix IV iodine laser at MPQ, Garching. IEEE J. Quant. Electron. QE–12, 152155.Google Scholar
Bishop, B. (2012). National Ignition Facility makes history with record 500 terawatt shot. Livermore: LLNL News, Lawrence Livermore National Laboratory.Google Scholar
Canova, F., Flacco, A., Canova, L., Clady, R., Chambaret, J.-P., Plé, F., Pittman, M., Planchon, T.A., Silva, M., Benocci, R., Lucchini, G., Batani, D., Lavergne, E., Dovillaire, G. & Levecq, X. (2007). Efficient aberrations pre-compensation and wavefront correction with a deformable mirror in the middle of a petawatt-class CPA laser system. Laser Part. Beams 25, 649655.CrossRefGoogle Scholar
Chekhlov, O.V., Collier, J.L., Ross, I.N., Bates, P.K., Notley, M., Hernandez-Gomez, C., Shaikh, W., Danson, C.N., Neely, D., Matousek, P. & Hancock, S. (2006). 35 J broadband femtosecond optical parametric chirped pulse amplification system. Opt. Lett. 31, 36653667.CrossRefGoogle ScholarPubMed
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, J.L., Fell, B., Frackiewicz, A.J., Hancock, S., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C.J., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2004). Vulcan Petawatt – An ultra-high-intensity interaction facility. Nucl. Fusion 44, S239S246.CrossRefGoogle Scholar
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, J.L., Fell, B., Frackiewicz, A.J., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C.J., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2005). Vulcan petawatt: Design, operation and interactions at 5 × 1020 Wcm−2. Laser Part. Beams 23, 8793.CrossRefGoogle Scholar
Divoký, M. & Straka, P. (2008). Simple two-dimensional-imaging spectrograph with wedged narrow band filters. Rev. Sci. Instrum. 79, 123114/1–4.CrossRefGoogle ScholarPubMed
Dostal, J., Dudzak, R., Huynh, J., Pfeifer, M., Skala, J., Ullschmied, J. & Jesatko, D. (2012). Synchronization of the PALS laser system. Network on High Energy Lasers (NAHEL). Annual NAHEL Meeting, CLF, Abingdon, Great Britain, AO-SUSSP68, 11.-.13.6. 2012.Google Scholar
Dostal, J., Turcicova, H., Kralikova, B., Kral, L. & Huynh, J. (2009). Iodine photodissociation laser SOFIA with MOPO-HF as a solid-state oscillator. Appl. Phys. B 97, 687694.CrossRefGoogle Scholar
Garanin, S.G. (2011). High-power lasers and their applications in high-energy-density physics studies. Uspekhi Fizicheskikh Nauk 181, 415421.CrossRefGoogle Scholar
Jedlička, P., Lazar, J. & Číp, O. (2006). Fully digital frequency stabilization of IR fiber-coupled laser. Rev. Sci. Instr. 77, 063111–5.CrossRefGoogle Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.CrossRefGoogle Scholar
Kirillov, G.A., Murugov, V.M., Punin, V.T. & Shemyakin, V.I. (1990). High power laser system ISKRA V. Laser Part. Beams 8, 827831.CrossRefGoogle Scholar
Kitagawa, Y., Sentoku, Y., Akamatsu, S., Mori, M., Tohyama, Y., Kodama, R., Tanaka, K.A., Fujita, H., Yoshida, H., Matsuo, S., Jitsuno, T., Kawasaki, T., Sakabe, S., Nishimura, H., Izawa, Y., Mima, K. & Yamanaka, T. (2002). Progress of fast ignitor studies and petawatt laser construction at Osaka University. Phys. Plasmas 9, 22022207.CrossRefGoogle Scholar
Lozhkarev, V.V., Freidman, G.I., Ginzburg, V.N., Katin, E.V., Khazanov, E.A., Kirsanov, A.V., Luchinin, G.A., Mal'shakov, A.N., Martyanov, M.A., Palashov, O.V., Poteomkin, A.K., Sergeev, A.M., Shaykin, A.A. & Yakovlev, I.V. (2007). Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals. Laser Phys. Lett. 4, 421427.CrossRefGoogle Scholar
Matousek, P., Rus, B. & Ross, I.N. (2000). Design of a Multi-Petawatt Optical Parametric Chirped Pulse Amplification for the Iodine Laser ASTERIX IV. IEEE J. Quant. Electron. 36, 158163.CrossRefGoogle Scholar
Miyanaga, N., Azechi, H., Tanaka, K.A., Kanabe, T., Kanabe, T., Jitsuno, T., Kawanaka, J., Fujimoto, Y., Kodama, R., Shiraga, H., Knodo, K., Tsubakimoto, K., Habara, H., Lu, J., Xu, G., Morio, N., Matsuo, S., Miyaji, E., Kawakami, Y., Izawa, Y. & Mima, K. (2006). 10-kJ PW laser for the FIREX-I program. J. Phys. IV France 133, 8187.CrossRefGoogle Scholar
Novák, O., Divoký, M., Bohm, P., Smrž, M., Sedlář, R., Straka, P. & Turčičová, H. (2008). Proposal of ultra-high-power beams at the kilojoule iodine laser PALS. International Conference on Ultrahigh Intensity Lasers (ICUIL 2008), Tongli, China, 27–31 October 2008.Google Scholar
Novák, O., Turcicova, H., Divoky, M., Smrz, M., Huynh, J. & Straka, P. (2012 a). Femtosecond pulse parametric amplification at narrowband high power gas laser pumping. Opt. Lett. 37, 21002102.CrossRefGoogle ScholarPubMed
Novák, O., Turčičová, H., Divoký, M., Smrž, M., Huynh, J. & Straka, P. (2012 b). Broadband OPCPA pumped by ultra-narrowband gaseous iodine laser. Proc. of SPIE 8240, 82400U-1–82400U-7.CrossRefGoogle Scholar
Novák, O., Turcicova, H., Smrz, M., Huynh, J., Pfeifer, M. & Straka, P. (2012 c). Broadband femtosecond OPCPA system driven by the single-shot narrow-band iodine photodissociation laser SOFIA. Appl. Phys. B 108, 501508.CrossRefGoogle Scholar
Ross, I.N., Matousek, P., New, G.H.C. & Osvay, K. (2002). Analysis and optimization of optical parametric chirped pulse amplification. J. Opt. Soc. Am. B 19, 29452956.CrossRefGoogle Scholar
Ross, I.N., Matousek, P., Towrie, M., Langley, A.J., Collier, J.L., Danson, C.N., Hernandez-Gomez, C., Neely, D. & Osvay, K. (1999). Prospects for a multi-PW source using optical parametric chirped pulse amplifiers. Laser Part. Beams 17, 331340.CrossRefGoogle Scholar
Rus, B., Rohlena, K., Skála, J., Králiková, B., Jungwirth, K., Ullschmied, J., Witte, K. J. & Baumhacker, H. (1999). New high-power laser facility PALS—prospects for laser–plasma research. Laser Part. Beams 17, 179194.CrossRefGoogle Scholar
Straka, P., Turcicova, H., Rohlena, K., Rus, B., Skala, J., Kralikova, B., Ullschmied, J. & Jungwirth, K. (2002). Proposed upgrades of the laser system PALS: from a novel solid-state oscillator toward petawatt. Czech. J. Phys. 52, 368374.Google Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.CrossRefGoogle Scholar
Tavella, F., Marcinkevicius, A. & Krausz, F. (2006). 90 mJ parametric chirped pulse amplification of 10 fs pulses. Opt. Expr. 14, 1282212827.CrossRefGoogle ScholarPubMed
Yamanaka, C., Kato, Y., Izawa, Y., Yoshida, K., Yamanaka, T., Sasaki, T., Nakatsuka, M., Mochizuki, T., Kuroda, J. & Nakai, S. (1981). Nd-Doped Phosphate Glass Laser Systems for Laser-Fusion Research. IEEE J. Quant. Electron. QE–17, 16391649.CrossRefGoogle Scholar