Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-04T21:08:14.023Z Has data issue: false hasContentIssue false

Design, development, and testing of non-intercepting profile diagnostics for intense heavy ion beams using a capacitive pickup and beam induced gas fluorescence monitors

Published online by Cambridge University Press:  28 November 2006

F. BECKER
Affiliation:
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
A. HUG
Affiliation:
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
P. FORCK
Affiliation:
GSI - Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany
M. KULISH
Affiliation:
IPCP, Departments of Chemistry and Material Sciences, Moscow, Russia
P. NI
Affiliation:
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
S. UDREA
Affiliation:
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
D. VARENTSOV
Affiliation:
GSI - Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany

Abstract

An intense and focused heavy ion beam is a suitable tool to generate high energy density in matter. To compare results with simulations it is essential to know beam parameters as intensity, longitudinal, and transversal profile at the focal plane. Since the beam's energy deposition will melt and evaporate even tungsten, non-intercepting diagnostics are required. Therefore a capacitive pickup with high resolution in both time and space was designed, built and tested at the high temperature experimental area at GSI. Additionally a beam induced fluorescence monitor was investigated for the synchrotron's (SIS-18) energy-regime (60–750 AMeV) and successfully tested in a beam-transfer-line.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Debus, J., Schulz-Ertner, D., Haberer, T., Kraft, G. & Jaekel, O. (2004). Heavy charged particle therapy: From the technical challenge to the clinical role. Radiotherapy Oncology 73, 122123.Google Scholar
Dewald, E.L., Landen, O.L., Suter, L.J., Schein, J., Holder, J., Campbell, K., Glenzer, S.H., McDonald, J.W., Niemann, C., Mackinnon, A.J., Schneider, M.S., Haynam, C., Hinkel, D. & Hammel, B.A. (2006). First hohlraum drive studies on the National Ignition Facility. Phys. Plasmas 13, 056315.Google Scholar
Dietrich, K.G., Mahrtolt, K., Jacoby, J., Boggasch, E., Winkler, M., Heimrich, B. & Hoffmann, D.H.H. (1990). Beam-plasma interaction experiments with heavy ion beams. Laser Part. Beams 8, 583593.CrossRefGoogle Scholar
Dotchin, L.W., Chupp, E.L. & Pegg, D.J. (1973). Radiative lifetimes and pressure dependence of the relaxation rates of some vibronic levels in N2+, N2, CO+ and CO. J. Chem. Phys. 59, 39603967.CrossRefGoogle Scholar
Fleurot, N., Cavailler, C. & Bourgade, J.L. (2005). The Laser Megajoule (LMJ) project dedicated to inertial confinement fusion: Development and construction status. Fusion Engin. Design 74, 147154.CrossRefGoogle Scholar
Forck, P., Bank, A., Giacomini, T. & Peters, A. (2005). Profile Monitors based on residual gas interaction. DIPAC Proc. ITTA 01. XX, 223227.
Forck, P. & Bank, A. (2002). Residual gas fluorescence for profile measurement at the GSI UNILAC. EPAC Proc. THPRI 056. XX, 18851887.
Funk, U.N., Bock, R., Dornik, M., Geissel, M., Stetter, M., Stowe, S., Tahir, N. & Hoffmann, D.H.H. (1998). High energy density in solid rare gas targets and solid hydrogen. Nucl. Inst. Meth. Phys. Res. A 415, 6874.CrossRefGoogle Scholar
Henning, W.F. (2004). The future GSI facility. Nucl. Inst. Meth. Phys. 214, 211215.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Rosmej, O.N., Spiller, P., Tahir, N.A., Weyrich, K., Dafni, T., Kuster, M., Ni, P., Roth, M., Udrea, S., Varentsov, D., Jacoby, J., Kain, V., Schmidt, R., Zioutas, K., Mintsev, V., Fortov, V.E. & Sharkov, B.Y. (2006). Particle accelerator physics and technology for high energy density physics research. Euro. Phys. J. DOI: 10.1140/epjd/e2006-00125-0.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hoffmann, D.H.H., Jacoby, J., Laux, W., Demagistris, M., Boggasch, E., Spiller, P., Stockl, C., Tauschwitz, A., Weyrich, K., Chabot, M. & Gardes, D. (1994). Energy-loss of fast heavy ion beams in plasmas. Nucl. Inst. Meth. Phys. Res. B 90, 19.Google Scholar
Horioka, K., Hasegawa, J., Nakajima, M., Iwasaki, H., Nakai, H., Hatsune, K., Ogawa, M., Takayama, K., Kishiro, J., Shiho, M. & Kawasaki, S. (1998). Long-pulse ion induction linac. Nucl. Inst. Meth. Phys. Res. A 415, 291295.CrossRefGoogle Scholar
Hughes, R.H. & Philpot, J.L. (1961). Spectroscopic study of controlled proton impact on molecular nitrogen. Phys. Rev. 123, 6.Google Scholar
Iwase, H., Niita, K. & Nakamura, T. (2002). Development of general-purpose particle and heavy ion transport Monte Carlo code: PHITS. J. Nucl. Sci. Techn. 39, 11421151.CrossRefGoogle Scholar
Kawata, S., Sonobe, R., Someya, T. & Kikuchi, T. (2005). Final beam transport in HIF. Nucl. Inst. Meth. Phys. Res. A 544, 98103.CrossRefGoogle Scholar
Kikuchi, T., Someya, T., Kawata, S., Nakajima, M., Horioka, K. & Katayama, T. (2005). Beam dynamics and emittance growth during final beam bunching in HIF driver systems. Nucl. Inst. Meth. Phys. Res. A 544, 262267.CrossRefGoogle Scholar
Kilkenny, J.D., Alexander, N.B., Nikroo, A., Steinman, D.A., Nobile, A., Bernat, T., Cook, R., Letts, S., Takagi, M. & Harding, D. (2005). Laser targets compensate for limitations in inertial confinement fusion drivers. Laser Part. Beams 23, 475482.Google Scholar
Kurosawa, T., Nakao, N., Nakamura, T., Iwase, H., Sato, H., Uwamino, Y. & Fukumura, A. (2000). Neutron yields from thick C, Al, Cu and Pb targets bombarded by 400 AMeV Ar, Fe, Xe, and 800 AMeV Si ions. Phys. Rev. C 62, 044615.Google Scholar
Logan, B.G., Bangerter, R.O., Callahan, D.A., Tabak, M., Roth, M., Perkins, L.J &. Caporaso, G. (2006). Assessment of potential for ion-driven fast ignition. Fusion Sci. Techn. 49, 399411.CrossRefGoogle Scholar
Meyer-ter-Vehn, J., Witkowski, S., Bock, R., Hoffmann, D.H.H., Hofmann, I., Muller, R.W., Arnold, R. & Mulser, P. (1990). Accelerator and target studies for heavy-ion fusion at the GSI. Phys. Fluids B-Plasma Phys. 2, 13131317.CrossRefGoogle Scholar
Neff, S., Knobloch, R., Hoffmann, D.H.H., Tauschwitz, A. & Yu, S.S. (2006). Transport of heavy-ion beams in a 1 m free-standing plasma channel. Laser Part. Beams 24, 7180.Google Scholar
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.J., Kuehl, T., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser Part. Beams 23, 385389.CrossRefGoogle Scholar
Roy, P.K., Yu, S.S., Henestroza, E., Anders, A., Bieniosek, F.M., Coleman, J., Eylon, S., Greenway, W.G., Leitner, M., Logan, B.G., Waldron, W.L., Welch, D.R., Thoma, C., Sefkow, A.B., Gilson, E.P., Efthimion, P.C. & Davidson, RC. (2005). Drift compression of an intense neutralized ion beam. Phys. Rev. Lett. 95, e234801.CrossRefGoogle Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.Google Scholar
Scheidenberger, C., Sthlker, Th., Meyerhof, W.E., Geissel, H., Mokler, P.H. & Blank, B. (1998). Charge states of relativistic heavy ions in matter. Nucl. Inst. Meth. Phys. Res. B 142, 441462.CrossRefGoogle Scholar
Sharkov, B.Y., Alexeev, N.N., Basko, M.M., Churazov, M.D., Koshkarev, D.G., Medin, S.A., Orlov, Y.N. & Suslin, V.M. (2005). Power plant design and accelerator technology for heavy ion inertial fusion energy. Nucl. Fusion 45, S291S297.Google Scholar
Spiller, P.J., Barth, W., Dahl, L., Eickhoff, H., Spaedtke, P. & Hollinger, R. (2006). Approaches to high intensities for FAIR. http://accelconf.web.cern.ch/AccelConf/e06/Pre-Press/MOZAPA01.pdf
Tahir, N.A., Udrea, S., Deutsch, C., Fortov, V.E., Grandjouan, G., Gryaznov, V., Hoffmann, D.H.H., Hulsmann, P., Kirk, M., Lomonosov, I.V., Piriz, A.R., Shutov, A., Spiller, P., Temporal, M. & Varentsov, D. (2004). Target heating in high energy-density matter experiments at the proposed GSI FAIR facility: Non-linear bunch rotation in SIS-100 and optimization of spot size and pulse length. Laser Part. Beams 22, 485493.Google Scholar
Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137142.Google Scholar
Varentsov, D., Tkachenko, I.M. & Hoffmann, D.H.H. (2005). Statistical approach to beam shaping. Phys. Rev. E 71, 066501.CrossRefGoogle Scholar
Varentsov, D., Tahir, N.A., Lomonosov, I.V., Hoffmann, D.H.H., Wieser, J. & Fortov, V.E. (2003). Energy loss dynamics of an intense uranium beam interacting with solid neon for equation-of-state studies. Europhys. Lett. 64, 5763.CrossRefGoogle Scholar
Varentsov, D., Spiller, P., Tahir, N.A., Hoffmann, D.H.H., Constantin, C., Dewald, E., Jacoby, J., Lomonosov, I.V., Neuner, U., Shutov, A., Wieser, J., Udrea, S. & Bock, R. (2002). Energy loss dynamics of intense heavy ion beams interacting with solid targets. Laser Part. Beams 20, 485491.Google Scholar