Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T22:37:19.416Z Has data issue: false hasContentIssue false

Design and simulation study of ultra-fast beam bunches split for three orthogonal planes high-energy electron dynamic radiography

Published online by Cambridge University Press:  14 September 2017

Q.T. Zhao*
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
S.C. Cao
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
X.K. Shen
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Y.R. Wang
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing 100049, China
Y. Zong
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
J.H. Xiao
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing 100049, China
Y.L. Zhu
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing 100049, China
Y.W. Zhou
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing 100049, China
M. Liu
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
R. Cheng
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Y.T. Zhao
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China Xi'an Jiaotong University, Xi'an 710049, China
Z.M. Zhang*
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
W. Gai
Affiliation:
Argonne National Laboratory, Argonne, IL 60439, USA
*
Address correspondence and reprint requests to: Q.T. Zhao and Z.M. Zhang, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China. Email: [email protected] and Email: [email protected]
Address correspondence and reprint requests to: Q.T. Zhao and Z.M. Zhang, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China. Email: [email protected] and Email: [email protected]

Abstract

Here a compact three orthogonal planes high-energy electron radiography system was proposed. One of the critical technologies, the ultra-fast beam bunches split from the bunch train are studied. The separated bunches could be transported to the three orthogonal planes of the target for dynamic radiography diagnostics. The key elements of the ultra-fast bunches split system are transverse deflecting cavity (TDC) and the twin septum magnet (TSM). The principle of TDC and TSM are briefly introduced. An example of the beam bunches split system for test experiment (40 MeV electron beam) with TDC and TSM is designed and studied by particle-tracking simulation and it confirms this method is valid and feasible. Especially with TSM, a compact three orthogonal planes radiography system can be realized. The evolution of the beam parameters along the beam line from simulation are investigated. The detailed design of the beam split system and beam dynamics simulation study are presented in this paper.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brut, G. (2012). Transverse deflecting cavities. CERN Yellow Report CERN-2011-007, p. 395–405. http://arxiv.org/abs/1201.2600.Google Scholar
Centurion, M., Reckenthaeler, P., Trushin, S., Krausz, F. & Fill, E. (2008). Picosecond electron deflectometry of optical-field ionized plasmas. Nat. Photonics 2, 315318.Google Scholar
Cornacchia, M. & Emmma, P. (2002). Transverse to longitudinal emittance exchange. Phys. Rev. Spec. Top. – Accel. Beams 5, 084001.Google Scholar
Floettmann, K.(2016). ASTRA – a space charge tracking algorithm. http://www.desy.de/~mpyflo/.Google Scholar
Gai, W., Qiu, J.Q. & Jing, C.G. (2014). Electron imaging system for untrafast diagnostics of HEDLP. Proc. SPIE 9211, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion III 2014, 921104.Google Scholar
Huck, H., Asova, G., Bakr, M., Boonpornprasert, P., Donat, A., Good, J., Gross, M., Hernandez-Garcia, C., Isaev, I., Jachmann, L., Kalantaryan, D., Khoyoyan, M., Koehler, W., Kourkafas, G., Krasilnikov, M., Malyutin, D., Melkuyan, D., Oppelt, A., Otevrel, M., Pohl, M., Renier, Y., Rublack, T., Schultze, J., Stephan, F., Trowitzsch, G., Vashchenko, G., Wenndorff, R., Zhao, Q., Churannov, D., Kravchuk, L., Paramonov, V., Rybakov, I., Zavadtsev, A., Zavadtsev, D., Lalayan, M., Smirnov, A., Sobenin, N., Gerth, C., Hoffmann, M., Hunig, M., Lishilin, O. & Pathak, G. (2015). First results of commissioning of the pitz transverse deflecting structure. Proc. of FEL2015, Daejeon, Korea, MOP039.Google Scholar
Malyutin, D. (2014). Time resolved transverse and longitudinal phase space measurement at the high brightness photo injector PITZ. PhD Thesis. http://bib-pubdb1.desy.de/record/171168. doi:10.3204/DESY-THESIS-2014-021.Google Scholar
Merrill, F.E. (2015). Imaging with penetrating radiation for the study of small dynamic physical processes. Laser Part. Beams 33, 425431.Google Scholar
Merrill, F.E., Harmon, F., Hunt, A., Mariam, F., Morley, K., Morris, C., Saunders, A. & Schwartz, C. (2007). Electron radiography. Nucl. Instrum. Methods Phys. Res. B 26, 382386.Google Scholar
Placidi, M., Jung, Y., Ratti, A. & Sun, C. (2014). Compact spreader schemes. Nucl. Instrum. Methods Phys. Res. A 768, 1419.Google Scholar
Schumaker, W., Nakanii, N., Mcguffey, C., Zulick, C., Chyvkov, V., Dollar, F., Habara, H., Kalintchenko, G., Maksimchuk, A., Tanaka, K., Thmos, A., Yanovsky, V. & Krushelnick, K. (2013). Ultrafast electron radiography of magnetic fields in high-intensity laser–solid interactions. Phys. Rev. Lett. 110, 015003.Google Scholar
Sharkov, B.Y., Hoffmann, H.H., Goluber, A.A. & Zhao, Y.T. (2016). High energy density physics with intense ion beams. Matter Radiat. Extremes 1, 2847.Google Scholar
Wang, L., Lund, S., Caporao, G., Chen, Y. & Poole, B. (1999). A prototype dipole septum magnet for fast high current kicker systems. Proc. 1999 Particle Accelerator Conf., p. 33813383.Google Scholar
Zhao, Q.T., Cao, S., Cheng, R., Shen, X., Zhang, Z., Zhao, Y., Gai, W. & Du, Y. (2014 a). High energy electron radiography experiment research based on picosencond pulse width bunch. Proc. LINAC, 2014, 7679.Google Scholar
Zhao, Q.T., Cao, S., Liu, M., Shen, X., Wang, Y., Zong, Y., Zhang, X., Jing, Y., Cheng, R., Zhao, Y., Zhang, Z., Du, Y. & Gai, W. (2016 a). High energy electron radiography system design and simulation study of beam angle-position correlation and aperture effect on the images. Nucl. Instrum. Methods Phys. Res. A 832, 144151.Google Scholar
Zhao, Y.T., Zhang, Z., Gai, W., Du, Y., Cao, S., Qiu, J., Zhao, Q., Cheng, R., Zhou, X., Ren, J., Huang, W., Tang, C., Xu, H., & Zhan, W. (2016 b). High energy electron radiography scheme with high spatial and temporal resolution in three dimension based on a e-LINAC. Laser Part. Beams 34, 338342.Google Scholar
Zhao, Y.T., Zhang, Z., Xu, H., Zhan, W., Gai, W., Qiu, J., Cao, S. & Tang, C. (2014 b). A high resolution spatial-temporal imaging diagnostic for high energy density physics experiments. Proc. IPAC 2014, 28192821.Google Scholar
Zhou, Z., Du, Y., Cao, S., Zhang, Z., Huang, W., Chen, H., Cheng, R., Chi, Z., Liu, M., Su, X., Tang, C., Tian, Q., Wang, W., Wang, Y., Xiao, J., Yan, L., Zhao, Q., Zhu, Y., Zhou, Y., Zong, Y. & Gai, W. (2017). Experiments on bright field and dark field high energy electron imaging with thick target material. To be submitted. https://arxiv.org/abs/1705.09810.Google Scholar