Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T03:32:18.216Z Has data issue: false hasContentIssue false

Design and efficient operation of a coaxial RBWO

Published online by Cambridge University Press:  09 July 2013

Y. Teng*
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, Shaanxi, People'sRepublic of China
C.H. Chen
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, Shaanxi, People'sRepublic of China
H. Shao
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, Shaanxi, People'sRepublic of China
J. Sun
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, Shaanxi, People'sRepublic of China
Z.M. Song
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, Shaanxi, People'sRepublic of China
R.Z. Xiao
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, Shaanxi, People'sRepublic of China
Z.Y. Du
Affiliation:
Northwest Institute of Nuclear Technology, Xi'an, Shaanxi, People'sRepublic of China
*
Address correspondence and reprint requests to: Y. Teng, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi, People's Republic of China. E-mail: [email protected]

Abstract

Coaxial relativistic backward wave oscillator with the rippled inner conductor not only increases the output efficiency but also results in the serious phenomenon of pulse shortening in experiments. Our research indicates that the two main mechanisms leading to the pulse shortening are the electron beam interruption and combining effects of the explosive field electron emission and the secondary electron multipactor on the surface of the slow-wave structure. In order to enhance its power capacity the electrodynamic structure is modified by detailed analysis of the field distribution in the coaxial slow-wave structure. The appropriate resonant reflector and the electron collector are developed for the application of the coaxial relativistic backward wave oscillator. A series of surface treatment is applied to enhance the power capacity of the coaxial RBWO. In the experiment, the microwave pulse duration is increased from less than 10 ns to 20 ns, and the output efficiency is enhanced from less than 20% to 34% employing the electron beam pulse of the full width at half maximum 28 ns. The peak power of 1.01 GW at the frequency of 7.4 GHz is achieved. It is found that the output efficiency of the coaxial RBWO is likely to be advanced if its power capacity can be boosted further.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agee, F.J. (1998). Evolution of pulse shortening research in narrow band, high power microwave sources. IEEE Trans. Plasma Sci. 26, 235245.CrossRefGoogle Scholar
Benford, J. & Benford, G. (1997). Survey of pulse shortening in high-power microwave sources. IEEE Trans. Plasma Sci. 25, 311317.CrossRefGoogle Scholar
Benford, J., Swegle, J. & Schamiloglu, E. (2006). BWOs, MWCGs, and O-Type Cerenkov Devices. In High Power Microwaves (Benford, J., Swegle, J. & Schamiloglu, E, Eds.), pp. 321370. New York: Taylor & Francis.Google Scholar
Chang, C., Liu, G.Z., Fang, J.Y., Tang, C.X., Huang, H.J., Chen, C.H. & Zhang, Q.Y. (2010). Field distribution, HPM multipactor, and plasma discharge on the periodic triangular surface. Laser Part. Beams 28, 185193.CrossRefGoogle Scholar
Eltchaninov, A.A., Korovin, S.D., Rostov, V.V., Pegel, I. V., Mesyats, G.A., Rukin, S.N., Shpak, V.G., Yalandin, M.I. & Ginzburg, N.S. (2003). Production of short microwave pulses with a peak power exceeding the driving electron beam power. Laser Part. Beams 21, 187196.CrossRefGoogle Scholar
Ge, X.J., Zhong, H.H., Qian, B.L., Zhang, J., Fan, Y.W., Shu, T. & Liu, J.L. (2009). Dispersive characteristics and longitudinal resonance properties in a relativistic backward wave oscillator with the coaxial arbitrary-profile slow-wave structure. Phys. Plasmas 16: 113104.CrossRefGoogle Scholar
Gilgenbach, R.M., Hochman, J.M., Jaynes, R.L., Cohen, W.E., Rintamaki, J.I., Peters, C.W., Vollers, D.E., Lau, Y.Y. & Spencer, T.A. (1998). Optical spectroscopy of plasma in high power microwave pulse shortening experiments driven by a μs e-Beam. IEEE Trans. Plasma Sci. 26, 282289.CrossRefGoogle Scholar
Goebel, D.M. (1998). Pulse shortening causes in high power BWO and TWT microwave sources. IEEE Trans. Plasma Sci. 26, 263274.CrossRefGoogle Scholar
Gunin, A.V., Klimov, A.I., Korovin, S.D., Kurkan, I.K., Pegel, I.V., Polevin, S.D., Roitman, A.M., Rostov, V.V., Stepchenko, A.S. & Totmeninov, E.M. (1998 a). Relativistic X-band BWO with 3-GW output power. IEEE Trans. on Plasma Sci. 26, 326331.CrossRefGoogle Scholar
Gunin, A.V., Korovin, S.D., Kurkan, I.K., Pegel, I.V., Rostov, V.V. & Totmeninov, E.M. (1998 b). Relativistic BWO with electron beam pre-modulation. Proc. 12th International conf. on High-power Particle Beams. Haifa, Israel, 11, 849852.Google Scholar
Jin, Z.X., Zhang, J., Yang, J.H., Zhong, H.H., Qian, B.L., Shu, T., Zhang, J.D., Zhou, S.Y. & Xu, L.R. (2011). A repetitive S-band long-pulse relativistic backward-wave oscillator. Rev. Sci. Instrum. 82, 084704.CrossRefGoogle ScholarPubMed
Korovin, S. (1999). Increasing microwave output power pulse length in a 3 GW backward wave oscillator using low-energy electron beam-treated slow-wave structure rings. Report No. 0704-0188. Russia, Tomsk: Institute of High Current Electronics.Google Scholar
Korovin, S.D., Mesyats, G.A., Pegel, I.V., Polevin, S.D. & Tarakanov, V.P. (2000). Pulse width limitation in the relativistic backward wave oscillator. IEEE Trans. Plasma Sci. 28, 485495.Google Scholar
Korovin, S.D., Kurkan, I.K., Loginov, S.V., Pegel, I.V., Polevin, S.D., Volkov, S.N. & Zherlitsyn, A.A. (2003). Decimetr-band frequency-tunable sources of high-power microwave pulses. Laser Part. Beams 21, 175185.CrossRefGoogle Scholar
Kovalchuk, B.M., Kharlou, A.V., Zherlitsyn, A.A., Kumpjak, E.V., Tsoy, N.V., Vizir, V.A. & Smorudov, G.V. (2009). 40 GW linear transformer driver stage for pulse generators of mega-ampere range. Laser Part. Beams 27, 371378.CrossRefGoogle Scholar
Kovalev, N.F., Nechaev, V.E., Petelin, M.I. & Zaitsev, N.I. (1998). Scenario for output pulse shortening in microwave generators driven by relativistic electron beams. IEEE Trans. plasma Sci. 26, 246250.CrossRefGoogle Scholar
Li, G.L., Yuan, C.W., Zhang, J.Y., Shu, T. & Zhang, J. (2008). A diplexer for gigawatt class high power microwave. Laser Part. Beams 26, 371377.CrossRefGoogle Scholar
Li, G.L., Shu, T., Yuan, C.W., Zhu, J., Liu, J., Wang, B. & Zhang, J. (2010). Simulation operation of X band gigawatt level high power microwave. Laser Part. Beams 28, 3545.CrossRefGoogle Scholar
Liu, G.Z., Chen, C.H. & Zhang, Y.L. (2001). Relativistic backward-wave oscillator with coaxial extractor. Hi. Power Laser Part. Beams 13, 467470.Google Scholar
Liu, G.Z. (2002). Numerical simulation research on a relativistic high power microwave device wit h coaxial slow wave structure. Proc. 5th High Power Microwave Conf. Zhuhai, Xi'an, 2–6.Google Scholar
Liu, G.Z., Xiao, R.Z., Chen, C.H., Shao, H., Hu, Y.M. & Wang, H.J. (2008). A Cerenkov generator with coaxial slow wave structure. J. Appl. Phys. 103, 093303.CrossRefGoogle Scholar
Liu, J.L., Yin, Y., Ge, B., Zhan, T.W., Chen, X.B., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007). An electron-beam accelerator based on spiral water PFL. Laser Part. Beams 25, 593599.CrossRefGoogle Scholar
Mayberry, C.S., Wroblewski, B., Schamiloglu, E. & Fleddermann, C.B. (1994). Suppression of vacuum breakdown using thin-film coatings. J. Appl. Phys. 76, 44484451.CrossRefGoogle Scholar
Min, S.H., Jung, H.C., Shin, S.H., Park, G.S., An, J.H., Lee, S.H., Yoon, Y.J., Kim, J.Y., Lee, W.S. & So, J.H. (2008). Pulse shortening by RF breakdown in relativistic backward wave oscillator. Proc. IEEE 10th Int. Vacuum Electronic Conf. Rome, Italy, 364365.CrossRefGoogle Scholar
Polevin, S.D., Korovin, S.D., Kovalchuk, B.M., Karlik, K.V., Kurkan, I.K., Ozur, G.E., Pegel, I.V., Proskurovsky, D.I., Sukhov, M., Yu. & Volkov, S.N. (2004). Pulse Lengthening of S-Band Resonant Relativistic BWO. Proc. 13th International Symposium on High Current Electronics. Tomsk, Russia, 245249.Google Scholar
Price, D. & Benford, J.N. (1998). General scaling of pulse shortening in explosive-emission-driven microwave source. IEEE Trans. Plasma Sci. 26, 263274.CrossRefGoogle Scholar
Roy, A., Menon, R., Mitra, S., Kumar, D.D.P., Kumar, S., Sharma, A., Mittal, K.C., Nagesh, K.V. & Chakravarthy, D.P. (2008). Impedance collapse and beam generation in a high power planar diode. J. Appl. Phys. 104, 014904.CrossRefGoogle Scholar
Schamiloglu, E. (1999). Upgrade of a long pulse, high power backward wave oscillator to ultraclean vacuum conditions. Report No. F49620-97-1-0102. Albuquerque, NM: University of New Mexico (UNM), Department of Electrical and Computer Engineering Pulsed Power and Plasma Science Laboratory.Google Scholar
Swegle, J.A. & Benford, J.N. (1998). High-power microwaves at 25 years: the current state of development. Proc. 12th International conf. on High-power Particle Beams. Haifa, Israel, 1, 149–152.Google Scholar
Teng, Y., Liu, G.Z., Shao, H. & Tang, C.X. (2008). A new reflector designed for efficiency enhancement of CRBWO. IEEE Trans. Plasma Sci. 6, 10621068.Google Scholar
Teng, Y., Tang, C.X., Liu, G.Z., Chen, C.H. & Shao, H. (2009). Growth rate of the coaxial slow wave structure. Proc. IEEE 10th Int. Vacuum Electronic Conf. Rome, Italy, 226–227.CrossRefGoogle Scholar
Teng, Y., Xiao, R.Z., Liu, G.Z., Tang, C.X., Chen, C.H. & Shao, H. (2010). Starting current of coaxial relative backward wave oscillator. Phys. Plasmas 17, 063108.CrossRefGoogle Scholar
Teng, Y., Xiao, R.Z., Song, Z.M., Sun, J., Chen, C.H. & Shao., H. (2011). Efficiency Enhancement of RBWO by introduction of coaxial rippled inner conductor. Proc. 25th Asia-Pacific Microwave Conf. Melbourne, Australia, 215–218.Google Scholar
Teng, Y., Xaio, R.Z., Song, Z.M., Sun, J., Chen, C.H., Shao, H. & Liu, G.Z. (2012). Research on wave-beam interaction in coaxial relativistic backward wave oscillator. Hi. Power Laser Part. Beams 24, 175180.CrossRefGoogle Scholar
Voronkov, S.N., Loza, O.T. & Strelkov, P.S. (1991). Limits on the length of radiation pulses generated by microwave oscillators using microsecond relativistic beams. Sov. J. Plasma Phys. 17, 439442.Google Scholar
Xiao, R.Z., Teng, Y., Chen, C.H. & Sun, J. (2011). High efficiency coaxial klystron-like relativistic backward wave oscillator with a premodulation cavity. Phys. Plasmas. 18, 113102.CrossRefGoogle Scholar
Zhang, J., Jin, Z.X., Yang, J.H., Zhong, H.H., Shu, T., Zhang, J.D., Yuan, C.W., Li, Z. Q., Fan, Y.W., Zhou, S.Y. & Xu., L.R. (2010). Recent Advance in long-pulse HPM sources with repetitive operation in S, C and X-band. Proc 3rd Euro-Asian Conf. on Pulsed Power and 18th Int. Conf. on High-power Particle Beams. Jeju, Korea, 148–157.Google Scholar