Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T00:23:45.836Z Has data issue: false hasContentIssue false

Converting nuclear energy into the energy of coherent optical radiation

Published online by Cambridge University Press:  19 September 2013

Erlan Batyrbekov*
Affiliation:
National Nuclear Center, Kurchatov, Republic of Kazakhstan
*
Address correspondence and reprint requests to: Erlan Gadletovich Batyrbekov, 2 Krasnoarmeyskaya str., Kurchatov 071100, Kazakhstan. E-mail: [email protected]

Abstract

This paper is devoted to the question of the conversion of nuclear energy into the energy of coherent optical radiation. The two possible ways to convert nuclear energy into laser radiation are discussed: direct and combined nuclear pumping. The concept of using laser gas active media capable of working with both direct and combined nuclear pumping is considered. The results of an investigation by Kazakh scientists on nuclear pumped lasers active media on bound–bound atomic transitions are presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adonin, A., Hoffmann, J., Jacoby, J., Turtikov, V., Ulrich, A. & Wieser, J. (2009). Intense heavy ion beams as a pumping source for short wavelength lasers. Laser Part. Beam 27, 379391.CrossRefGoogle Scholar
Akerman, M.A. (1976). Demonstration of the first visible wavelength DNPL. PhD Thesis. Urbana, IL: Nuclear Engineering Program, University of Illinois.Google Scholar
Akerman, M.A. & Miley, G.H. (1977). A helium-mercury direct nuclear pumped laser. Appl. Phys. Lett. 30, 409412.CrossRefGoogle Scholar
Aleksandrov, A.Y., Basov, N.G. & Danilychev, V.A. (1981). About possibility of creating eximer lasers with ionization by external low power source. Quant. Electron. 8, 1992.Google Scholar
Alford, W.J. & Hays, G.H. (1990). Measured laser parameters for reactor-pumped He–Ar–Xe and Ar–Xe lasers. J. Appl. Phys. 65, 3760.Google Scholar
Andriyahin, V.M. (1972). Regarding nuclear pumping of lasers based on molecular gases. JTP 63, 16351642.Google Scholar
Andriyahin, V.N., Golubev, E.A., Krasilnikov, S.S., Pismenyi, V.D., Rakhimov, A.T., Velihov, E.P. (1969). About power increase of laser generation on CO2 under the influence of fast protons beam. Lett. JTP 8, 346349.Google Scholar
Andriyahin, V.N., Kovalev, A.S. & Velihov, E.P. (1973). Quasi-stationary CO2-laser of atmosphere pressure with dependent charge, controlled neutrons flow. Lett. JTP 18, 1519.Google Scholar
Andriyahin, V.N., Krasilnikov, S.S., Pismenniy, V.D. & Vasiltsov, V.V. (1972). Referring to lasers nuclear pumping on the base of molecular gases. JTP 63, 16351644.Google Scholar
Basov, N.G. (1971). Quantum Electronics: Issue 3. M: Sov Radio.Google Scholar
Basov, N.G., Danilevich, V.A., Kerimov, O.M. & Milanich, A.I. (1981). Electric discharge eximer laser on XeF* molecule with stabilization of discharge by electron beam of low current density. Lett. JTP 7, 1217.Google Scholar
Batyrbekov, E.G. (1990). About influence on population effectiveness of 3р NeI levels. Vest. AN Kaz. SSR 6, 7479.Google Scholar
Batyrbekov, E.G. (1994). Direct and Combined Nuclear Pumped Lasers. Almaty: IAE NNC RK. 69 p.Google Scholar
Batyrbekov, E.G. (2008 a). Nuclear-Excited Sources of Optical Radiation. Almaty: Print-S.Google Scholar
Batyrbekov, E.G. (2008 b). Role of helium in deactivation of 3р′[1/2]0 state of neon atom. Rep. NAN RK 5, 8083.Google Scholar
Batyrbekov, E.G. (2008 c). Kinetic model of lasers active medium with direct nuclear pumping at neon atom transitions. Vest. AN RK 3, 1114.Google Scholar
Batyrbekov, E.G. (2008 d). Temperature dependence of output parameters of direct nuclear-pumped laser xenon laser. Izv. NAN RK, Ser. Phys.-Math. Sci. 4, 2931.Google Scholar
Batyrbekov, E.G. (2008 e). Nuclear-excited sources of coherent optical radiation with direct nuclear pumping at transitions of xenon atom. Vest. NAN RK 5, 110114.Google Scholar
Batyrbekov, E.G. (2008 f). Luminescence of xenon-containing nuclear-excited mixtures. Vest. NAN RK 5, 4952.Google Scholar
Batyrbekov, E.G. (2008 g). Xenon nuclear-optical converters. Vest. NAN RK 4, 2225.Google Scholar
Batyrbekov, E.G. (2009). Active media temperature effect on kinetics of plasma-chemical processes of direct nuclear-pumped xenon laser. Lett. JТP 35, 4752.Google Scholar
Batyrbekov, E.G. & Danilychev, V.A. (1992). Kinetic Model of Lasers at 3р–3s Transitions of Neon Atom with Weak Source of External Ionization. Almaty: INP AN Кaz SSR.Google Scholar
Batyrbekov, E.G., Batyrbekov, G.A., Bekmurzayeva, Z.B., Hasenov, M.U. & Soroka, A.M. (1987 b). Change of the rate constant of Хе2+ ions charge exchange on mercury atoms. Opt. Spectrosc. 62, 229230.Google Scholar
Batyrbekov, E.G., Batyrbekov, G.A. & Danilychev, V.A. (1994 b). Kinetics of laser active media for Ne 3p–3s transition pumped by a weak sources of external ionization. Hyperfine Interact. 88, 499.CrossRefGoogle Scholar
Batyrbekov, E.G., Batyrbekov, G.A., Danilychev, V.A. & Hasenov, M. (1989 a). Electric discharge xenon laser with weak ionization by external source. Quant. Electron. 16, 21652169.Google Scholar
Batyrbekov, E.G., Batyrbekov, G.A., Danilychev, V.A. & Hasenov, M. (1991). Effectivity of neon 3р levels population under excitement by hard ionizer. Opt. Spectrosc. 68, 727732.Google Scholar
Batyrbekov, E.G., Batyrbekov, G.A., Danilychev, V.A. & Nazarov, A. (1989 b). Investigation of generation on 3р–3s neon transitions during pumping by independent charge with radioisotope preionization. Quant. Electron. 16, 20602062.Google Scholar
Batyrbekov, E.G., Batyrbekov, G.A., Danilychev, V.A. & Nazarov, A. (1990). Helium effect on effectivity of 3р neon levels population. Quant. Electron. 20, 1084.Google Scholar
Batyrbekov, E.G., Batyrbekov, G.A., Dolgih, V.A., Hasenov, M.V. & Rudoi, I.G. (1997). About possibility of creating quasi-continuous laser on 73S –63P mercury transitions during pumping by ionizing radiation. Quant. Electron. 14, 12161219.Google Scholar
Batyrbekov, E.G., Batyrbekov, G.A., Dolgih, V.A. & Ruddoi, I. (1987 d). Kinetics of НgI Excited States During Pumping by Ionizing Radiation, N3, pp. 141. Alma-Ata: INP Kaz SSR.Google Scholar
Batyrbekov, E.G., Batyrbekov, G.A., Dolgih, V.A. & Ruddoi, I. (1988). Luminescence of mercury mixtures and inert gases with molecular additives under excitement by ionizing radiation. J. Appl. Spectrosc. 49, 770774.CrossRefGoogle Scholar
Batyrbekov, E.G., Batyrbekov, G.A., Hasenov, M.U. & Tleuzhanov, A.B. (1987 c). Factor change of nuclear energy conversion into optical energy in the Хе–Нg mixtures. J. Appl. Spectrosc. 47, 650654.Google Scholar
Batyrbekov, E.G., Batyrbekov, G.A., Hasenov, M.U. & Tleuzhanov, A.B. (1987 e). Electric-charge laser with radioisotope preionization. JTP 57, 783785.Google Scholar
Batyrbekov, E.G., Batyrbekov, G.A., Hasenov, M.U., & Tleuzhanov, A.B. (1987 a). Molecular band in Ar–Xe mixture radiation spectrum. Opt. Spectrosc. 62, 212214.Google Scholar
Batyrbekov, E.G., He, Z., Lin, L. & Prelas, M. (1993 a). Design of an ICF plant using a nuclear-driven solid state laser. Laser Part. Beam 13, 95102.Google Scholar
Batyrbekov, E.G., Miley, G., Poletayev, E.D. & Sudzuki, E. (1995). Ar–Xе laser with 1.73 µm wavelength, pumped with the products of 10В(n,α)Li7 nuclear reaction. Proc. Conf. on Physics of Nuclear-Excited Plasma and Problems Related to Nuclear Pumped Lasers, Vol. 1, p. 329. Arzamas 16.Google Scholar
Batyrbekov, E.G., Miley, G.H., Petra, M., Poletaev, E.D. & Suzuki, E. (1994 a). Study of thermal blooming in NPLs for combined wall and volume pumping. IAP Laser Interaction and Related Plasma Phenomena Conf. Proc., Vol. 318, p. 512.Google Scholar
Batyrbekov, E.G., Miley, G.H. & Poletaev, E.D. (1994 c). IR Xe direct nuclear pumped laser. Transactions of Conf. on Laser and Electro-Optics CLEO'94, CTh04, 8–13 May, Anaheim, CA, USA. p. 120.Google Scholar
Batyrbekov, E.G., Miley, G.H., Poletaev, E.D. & Suzuki, E. (1993 b). B10(n,α)Li7 pumped Ar–Xe Laser. Proc. 11th Int. Conf. on Laser Interactions and Related Plasma Phenomena, Vol. 318, p. 515. Monterey, CA.CrossRefGoogle Scholar
Batyrbekov, G.A., Beisebayev, A.O., Gizatulin, Sh.H., Danilychev, V.A., Hasenov, M.U., Ionin, A.A., Kovsh, I.B. & Kostritsa, S.A. (1982 a). Research of electric ionization CO2 and CO-lasers, operating in the active zone of the stationary nuclear reactor. Quant. Electron. 9, 14931496.Google Scholar
Batyrbekov, G.A., Danilychev, V.A., Hasenov, M.U., Ionin, A.A., Komarov, O.V., Kunakov, S.K., Mardenov, M.P. & Pertrov, N.N. (1979 a). Investigation of plasma parameters of dependent charge in gas mixture CO–N23He, placed in the active zone of the nuclear reactor. JTP 49, 5561.Google Scholar
Batyrbekov, G.A., Danilychev, V.A., Hasenov, M.U., Ionin, A.A., Kovsh, I.B., Kunakov, S.K. & Mardenov, M.P. (1978 b). Excitement of laser mixtures CO–N23He and CO2–N23He by dependent charge in the active zone of nuclear reactor. Izv. AN USSR 42, 24842487.Google Scholar
Batyrbekov, G.A., Danilychev, V.A., Hasenov, M.U. & Kovsh, I.B. (1979 b). Cooled electric-ionization CO –laser, operating in the active zone of the nuclear reactor. Lett. JTP 5, 837840.Google Scholar
Batyrbekov, G.A., Danilychev, V.A., Hasenov, M.U., Kovsh, I.B. & Mardenov, M.P. (1977 c). Electro-ionization CO2-laser, operating in active zone of the stationary nuclear reactor. Quant. Electron. 4, 11661168.Google Scholar
Batyrbekov, G.A., Danilychev, V.A. & Mardenov, M.P. (1977 b). Dependent charge in CO2–N2–Не3 plasma formed in the radiation field of the stationary nuclear reactor. Brief Commun. Phys.–ATF 3, 2630.Google Scholar
Batyrbekov, G.A., Haritonova, K.C., Kunakov, S.K., Klyukin, A.A., Komarov, O.V., Mardenov, M.P., Petrov, N.N. & Takibaev, Zh.C. (1978 a). Investigation of plasma parameters of CO2–N2–Не3 mixture formed in the active zone of the stationary nuclear reactor. JTP 48, 3941.Google Scholar
Batyrbekov, G.A., Hasenov, M.U. & Kostritsa, A.A. (1983). Chemical processes in plasma of gas mixture CO–N23He, placed in the active zone of the nuclear reactor. Chem. High Energies 17, 266269.Google Scholar
Batyrbekov, G.A., Hasenov, M.U., Kostritsa, A.A., Kuzmin, Y.A. & Tleuzhanov, A.B. (1982 b). About possibility of creating eximer lasers with ionization by nuclear reactor radiation. Lett. JTP 8, 789791.Google Scholar
Batyrbekov, G.A., Kunakov, S.K. & Mardenov, M.P. (1977 a). Kinetics of processes and electrons concentration in dense plasma of gas mixtures CO2–N2–Не3 and CO2–N2–Не3–Хе, produced in nuclear reactor. Izv. AN Kaz SSR–Ser. Phys.–Math. 6, 5660.Google Scholar
Bigio, I.J. (1978). Preionization of pulsed gas laser by radioactive source. IEEE J. Quant. Electron. 14, 7576.CrossRefGoogle Scholar
Bochkov, V.A., Kryzhanovskii, E.P. & Magda, K.F. (1992). Quasi-cw lasing on the 73S1–63P2 atomic mercury transition. Sov. Tech. Phys. Lett. 18, 241244.Google Scholar
Body, F.P., Miley, G.H., Nagalingam, S.J.S. & Prelas, M.A. (1978, Nov.). Nuclear pumping of XeF(B) a candidate laser fusion driver. Trans. Am. Nucl. Soc. 30, 26.Google Scholar
Campus, T.P.R. & Shaban, Y.R. (1997 a). A proposed continuous wave 585.4 nm 4He/Ne/H2 gas laser mixture pumped by α-emitter radioisotope. Braz. J. Phys. 27, 129134.Google Scholar
Campus, T.P.R. & Shaban, Y.R. (1997 b). Ideal kinetics study of the 585.4 nm He/Ne/H2 nuclear pumped laser. Braz. J. Phys. 27, 96103.Google Scholar
Carter, D.D., Rowe, M.J. & Schneider, R.T. (1980). Nuclear pumped CW lasing of the 3He–Ne system. Appl. Phys. Lett. 36, 115117.CrossRefGoogle Scholar
Chengde, Y., Xiaobo, L. & Xiaoqiang, F. (2007). Prompt neutron decay constant critical measurements on CFBR. IV Int. Conf. on Physics of Nuclear-Pumped Lasers and Pulse Reactors, pp. 120–121. Obninsk, Russia.Google Scholar
Danilyzhev, V.A., Kerimov, O.M. & Kovsh, I.B. (1976). Proc. FIAN USSR 85, 49.Google Scholar
De Young, R.A. (1976, May). Direct nuclear pumped neon–nitrogen laser. PhD Thesis. Urbana, IL: Nuclear Engineering Program, University of Illinois.CrossRefGoogle Scholar
De Young, R., McArtur, D., Miley, G.H. & Prelas, M. (1989, April) Fusion reactor pumped lasers: history and prospects. Proc. ANS Conf. on Fifty Years with Nuclear Fusion Behrens, J.W. and Carlson, A.D., Eds.), pp. 333–342. La Grande Park, IL: NIST.Google Scholar
Dmitriyev, A.B., Ilyashenko, V.S. & Miskevich, A.I. (1982). Excitement by the products of neutron nuclear reactions of laser transitions in parametal gas mixtures. JTP 52, 22352237.Google Scholar
Dmitriyev, A.B., Ilyashenko, V.S., Miskevich, A.I., Salamakh, B.S. & Sipailo, A.A. (1980). Generation of laser radiation on cadmium vapors excited by the products of Не3(n,p)Т reaction. Lett. JTP 6, 818821.Google Scholar
Dobrovolskiy, A.F., Dyachenko, P.P. & Seregina, E.A. (2003). Using laser in investigation of time dependence of induced absorption in liquid, excited by the fission fragments. Quant. Electron. 33, 926930.Google Scholar
Dovbysh, L.E., Kazakevich, A.T., Krivonosov, V.N., Melnikov, S.P., Podmoshenskii, I.V., Sinyanskii, A.A. & Voinov, A.M. (1979 a). Low-threshold nuclear pumped lasers at the transitions of atomic xenon. DAN USSR 245, 8083.Google Scholar
Dovbysh, L.E., Kazakevich, A.T., Krivonosov, V.N., Melnikov, S.P., Podmoshenskii, I.V., Sinyanskii, A.A. & Voinov, A.M. (1979 b). Infrared nuclear pumped lasers at the ArI, KrI, XeI transitions. Lett. JTP 7, 422424.Google Scholar
Fedenev, A.F., Karelin, A.V., Tarasenko, V.F. & Yakovlenko, S.I. (1995). High-pressure He–Cd and He–Zn lasers pumped by a hard ionizer. Laser Part. Beams 13, 111128.Google Scholar
Fuller, J.I., Helmick, H.H. & Schneider, R.T. (1975, March). Direct nuclear pumping of helium–xenon laser. Appl. Phys. Lett. 26, 327329.Google Scholar
Gauley, T., Miley, G.H. & Verdeyn, J. (1971). Enhancement of CO2 laser power and efficiency by neutron irradiation. Appl. Phys. 12, 568.Google Scholar
Glushchenko, Y.V. & Lavrenyuk, V.E. (1986). Preionization of gas mixture CO2-laser by α-particles. Quant. Electron. 13, 20312037.Google Scholar
Grebyonkin, V.A. & Magda, K.F. (1991). Nuclear pumped lasers at the Institute of Technical Physics. Transactions Lasers'90, San Diego, CA, p. 827.Google Scholar
Gudzenko, L.I., Malishevskiy, V.S. & Yakovlenko, S.I. (1978). About hard source pumped CO-laser. JTP 48, 2150.Google Scholar
Han-De, C., Hua-Ming, H. & Kai-shu, W. (1993). Investigations of nuclear reactor-pumped He3–Ne laser system. Conf. Proc. Physics of Nuclear-Excited Plasma and Problems Related to Nuclear-Pumped Lasers 2, 219–224.Google Scholar
Hasan, H.A. (1980). Kinetics of CO2-laser with nuclear pumping. Rocket Technol. Cosmonaut. 8, 90.Google Scholar
Hayashida, H., Nakamura, H., Nakazava, M., Okumura, A. & Soramoto, S. (1991). A proposal of a new in-core neutron monitor using nuclear-pumped laser. Nuclear Instrum. Methods Phys. Res. A 306, 530.Google Scholar
Hays, G.H. & Hebner, G.A. (1990). Fission-fragment-excited lasing at 585.3 nm in He/Ne/Ar gas mixtures. Appl. Phys. 57, 2175.Google Scholar
Herwig, L.O. (1964). Concepts for direct conversion of stored nuclear energy to laser beam power. Trans. Am. Nucl. Soc. 7, 131132.Google Scholar
Hohl, F. (1978, May). Volume-pumped nuclear lasers. Proc. First Int. Symp. on Nuclear Induced Plasma and Nuclear Pumped Lasers, Orsay, France.Google Scholar
Kabakov, D.B., Kiselev, C.V. & Tikhov, G.V. (2007). Radiation-chemical output of excited neodymium (III) in laser liquids POCl3–MeCln235UO22+–Nd3+ (Me: Ti, Zr, Sn, Sb). Chem. High Energies 41, 102107.Google Scholar
Kakuta, T., Nakazawa, M. & Sakasai, K. (1998). Numerical simulation of a nuclear pumped 3He–Ne–Ar Gas laser for its optimization. Japan. J. Appl. Phys. 37, 48064811.Google Scholar
Kopai-Gora, A.P., Miskevich, A.I. & Salamaha, B.S. (1990). Emission of cadmium excited ions during bombardment by α-particles. Lett. JTP 16, 23.Google Scholar
Korzenev, A.N., Garanin, A.V. & Turutin, S.L. (2008). Investigation of gas nuclear-pumped laser generation threshold against presence duration of laser-active medium in the case of laser module. JTP 78, 7680.Google Scholar
Koshelev, A.S., Melnikov, S.P., Sinyanskii, A.A. & Voinov, A.M. (1990). Quasicontinuous gas laser, excited by fast neutrons. Lett. JTP 16, 8689.Google Scholar
Krucken, R., Ulrich, A. & Wieser, J. (2007). Low energy beam pumped lasers as a model system for nuclear pumped lasers. IV Int. Conf. on Physics of Nuclear-Pumped Lasers and Pulse Reactors, pp. 55–56. Obninsk, Russia.Google Scholar
Lavrenuyk, V.E., Podmoshenskiy, V. & Rogovtsev, P.N. (1983). CO2 laser with radioisotope preionization. Lett. JTP xx, 284288.Google Scholar
Magda, E.P. (2007). Work results in RFNC–VNIITF on the study of lasers pumped from pulse reactors. IV Int. Conf. on Physics of Nuclear-Pumped Lasers and Pulse Reactors, pp. 14–16. Obninsk, Russia.Google Scholar
Mann, M.M. (1976). CO electric discharge lasers. AIAA J. 14, 549567.CrossRefGoogle Scholar
McArthyr, D.A. & Tollefsrud, P.B. (1975). Observation of laser action in CO gas excited only by fission fragments. Appl. Phys. Lett. 26, 187190.CrossRefGoogle Scholar
Melnikov, S.P., Podmoshenskii, I.V., Sinyanskii, A.A. & Voinov, A.M. (2007). Works performed in VNIIEF on possibility to create the reactor-laser. IV Int. Conf. on Physics of Nuclear-Pumped Lasers and Pulse Reactors, pp. 11–12. Obninsk, Russia.Google Scholar
Miley, G.H. (1993). Overview of nuclear pumped lasers. Laser Part. Beam 11, 575581.CrossRefGoogle Scholar
Miley, G.H. & Shaban, Y. (1993). A practical visible wavelength nuclear-pumped laser. Proc. Specialist Conf. on Physics of Nuclear Induced Plasma and Problems of Nuclear Pumped Lasers, Vol. 2, p. 241. Obninsk, Russia.Google Scholar
Mis'kevich, A.I. (1991). Visible and near-infrared direct nuclear-pumped lasers. Laser Phys. 5, 445449.Google Scholar
Obara, T. & Takezawa, H. (2007). Concept of low enrich uranium coupled reactor for nuclear-pumped laser. IV Int. Conf. on Physics of Nuclear-Pumped Lasers and Pulse Reactors, pp. 117–118. Obninsk, Russia.Google Scholar
Prelas, M. (1995). Lasers with combined nuclear pumping. Laser Part. Beam 13, 351364.CrossRefGoogle Scholar
Prelas, M.A. & Schlapper, G.A. (1981). Comments on “nuclear pumped CW lasing of the 3He–Ne system”. J. App. Phys. 52, 496497.CrossRefGoogle Scholar
Rhodes, C.K. (1979). Excimer Lasers. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Sinyanskiy, A.A. (1995). Investigation of creating nuclear-laser units of continuous action at VNIIEF. Proc. Second Int. Conf. on Physics of Nuclear-Excited Plasma and Problems of Nuclear-Pumped Lasers, Vol. 1, pp. 16–36. Obninsk, Russia.Google Scholar
Ulrich, A., Adonin, A., Jacoby, J., Turtikov, V., Fernengel, D., Fertman, A., Golubev, A., Hoffmann, D.H., Hug, A., Krücken, R., Kulish, M., Menzel, J., Morozov, A., Ni, P., Nikolaev, D.N., Shilkin, N.S., Ternovoi, V.Y., Udrea, S., Varentsov, D. & Wieser, J. (2006). Excimer laser pumped by an intense, high-energy heavy-ion beam. Phys. Rev. Lett. 97, 153901.CrossRefGoogle ScholarPubMed