Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T21:18:28.467Z Has data issue: false hasContentIssue false

Containment forces in stable plasma configurations

Published online by Cambridge University Press:  09 March 2009

D. R. Wells
Affiliation:
Physics Department, University of Miami, PO Box 248046, Coral Gables, Florida 33124

Abstract

It is demonstrated that finite pressure gradients can be maintained in the lowest free energy state (‘relaxed state’) of a plasma configuration. The pressure forces are supported by the Magnus Force in a compressible adiabatic plasma if mass motions are considered. It has been demonstrated elsewhere that these forces can be of the same order of magnitude as the Lorentz forces in some laboratory plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability, Oxford University Press, London.Google Scholar
Edenstrasser, J. W. & Schuurman, W. 1983Axisymmetric finite –β minimum energy equilibrium of weakly toroidal discharges,’ Phys. Fluids 26, 500.CrossRefGoogle Scholar
Moffatt, H. K. 1969The degree of knottedness of tangled vortex lines,’ J. Fluid Mech. 35, 117.CrossRefGoogle Scholar
Prandtl, L. 1949 Hydrodynamics, Springer Verlag, Berlin.Google Scholar
Rund, H., Wells, D. R. & Hawkins, L. C. 1978 J. Plasma Physics, 20, 329.CrossRefGoogle Scholar
Schmidt, G. 1966Physics of High Temperature and Plasmas,’ Academic Press, New York and London.Google Scholar
Seliger, R. L. & Whitham, G. B. 1968Variational Principles in Continuum Mechanics,’ Proc. Roy Soc. A. 305, 125.Google Scholar
Taylor, J. B. 1986Relaxation and Magnetic Reconnection in Plasmas,’ Rev. of Mod. Phys., 58, no. 3, 741, 763.CrossRefGoogle Scholar
Turner, L. 1986Hall Effects on Magnetic Relaxation.IEEE Transactions on Plasma Science. Vol. PS 6, 849857CrossRefGoogle Scholar
Wells, D. R. & Norwood, J. N. Jr. 1969A Variational Approach to the Dynamic Stability of High Density Plasmas in Magnetic Containment Devices,’ J. Plasma Physics, 3, 2140.CrossRefGoogle Scholar
Wells, D. R. 1970Dynamic stability of closed plasma configurations,’ J. Plasma Physics (1970), 4, part 4, 645665.CrossRefGoogle Scholar
Wells, D. R. 1985The Helicity Connection,’ Int. Jour, of Fusion Energy, 3, no. 4.Google Scholar
Wells, D. R. 1986a ‘Titus-Bode and the Helicity Connection,’ IEEE Transactions on Plasma Science, Vol. PS14 no. 6, 865873.CrossRefGoogle Scholar
Wells, D. R. et al. 1986b ‘Hydrodynamic Confinement of Thermonuclear Plasmas,’ Fusion Technology, 9, no. 1, 8396.CrossRefGoogle Scholar
Wells, D. R. & Hawkins, L. 1987Containment Forces in Low Energy States of Plasmoids,’ to be published in The Jour, of Plasma Physics.CrossRefGoogle Scholar
Woltjer, L. 1959a ‘Hydromagnetic Equilibrium In Axisymmetric Compressible Media,’ Proc. Nat. Acad. Sci., 44, 489.CrossRefGoogle Scholar
Woltjer, L. 1959b ‘On hydromagnetic equilibrium,’ Proc. Nat. Acad. Sci, 44, no. 9, 833841.CrossRefGoogle Scholar
Woltjer, L. 1960On the Theory of Hydromagnetic Equilibrium,’ Rev. Modern Phys. 32, 914.CrossRefGoogle Scholar