Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T22:53:23.187Z Has data issue: false hasContentIssue false

Conical targets and pinch confinement for inertial fusion1

Published online by Cambridge University Press:  09 March 2009

P.M. Velarde
Affiliation:
Institute of Nuclear Fusion, ETSII, Madrid Polytechnic University, Spain
J.M. Martinez-Val
Affiliation:
Institute of Nuclear Fusion, ETSII, Madrid Polytechnic University, Spain
S. Eliezer
Affiliation:
Institute of Nuclear Fusion, ETSII, Madrid Polytechnic University, Spain
M. Piera
Affiliation:
Institute of Nuclear Fusion, ETSII, Madrid Polytechnic University, Spain
L. Chacon
Affiliation:
Institute of Nuclear Fusion, ETSII, Madrid Polytechnic University, Spain

Abstract

Conical microducts and minithrottles can be used to accelerate micropellets of fusionable fuel up to very high speeds (∼108 cm/s). The central collision of two pellets flying in opposite directions can produce a hot plasma where fusion reactions are triggered. The main drawback of this scheme is the short confinement time provided by the external guide tube (throttle). To obtain high yield, an extra force of confinement is advisable. In this paper, the performance of fuel implosions within conical targets and the effect of ultrashort magnetic fields and pinch forces are analyzed. Although very high currents are needed to stretch the confinement time, modern technologies based on pulse-power machines and fast discharges induced by ultrashort lasers can provide a solution to this problem.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, H.L. 1981 Physics Vademecum (American Institute of Physics, New York).Google Scholar
Daido, H. et al. 1986 Phys. Rev. Lett. 66, 280.Google Scholar
Dunne, M. et al. 1995 Phys. Rev. Lett. 75, 3858.CrossRefGoogle Scholar
Eliezer, S. et al. 1992 Physics Letters A164, 416.CrossRefGoogle Scholar
Fortov, V.E. 1995 In Proc. 7th Workshop of Atomic Physics in Ion-Driven Fusion.Google Scholar
Fortov, V.E. 1996 Private Communication.Google Scholar
Glasstone, S. & Lovberg, R.H. 1960 Controlled Thermonuclear Reactions (R.E. Krieger Pub. Co., New York).Google Scholar
Hora, H. 1991 Plasmas at High Temperature and Density (Springer-Verlag, Heidelberg).Google Scholar
Kessler, G. et al. 1993 In Nuclear Fusion by Inertial Confinement, Velarde, G. et al. , eds. (CRC Press, Florida).Google Scholar
Kidder, R.E. 1974 Nucl. Fusion 14, 53.CrossRefGoogle Scholar
Kolka, E. et al. 1993 Physics Letters A180, 132.CrossRefGoogle Scholar
Lawson, J.D. 1957 Proc. Phys. Soc. London B70, 6.CrossRefGoogle Scholar
Martinez-Val, J.M. et al. 1993 Il Nuovo Cimento 106, 1873.CrossRefGoogle Scholar
Martinez-Val, J.M. et al. 1994 Laser Part. Beams 12, 681.CrossRefGoogle Scholar
Martinez-Val, J.M. & Piera, M. 1996 Fusion Technology 29, 134.CrossRefGoogle Scholar
McQueene, R.G. 1989 In High Pressure Equations of State, Eliezer, S. and Ricci, R., eds. (North-Holland Pub., Amsterdam).Google Scholar
Mima, K. et al. 1989 Laser Part. Beams 7, 249.CrossRefGoogle Scholar
Post, R.F. 1956 Rev. Mod. Physics 28, 338.CrossRefGoogle Scholar
Pozowlski, A.E. 1986 Laser Part. Beams 4, 157.CrossRefGoogle Scholar
Ternovoi, V.Ya. 1984 Zhurnal Prik. Mekha. Tekhni. Fiziki 5, 68.Google Scholar
Turchi, P.J. & Bakler, W.L. 1973 J. Appl. Phys. 44, 4936.CrossRefGoogle Scholar
Velarde, G. et al. 1992 Particle Accelerators 37, 887.Google Scholar
Velarde, P.M. 1993 J. Comp. Physics 108, 27.CrossRefGoogle Scholar
Yamanaka, C. & Nakai, S. 1986 Nature 319, 757.CrossRefGoogle Scholar