Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T15:05:57.751Z Has data issue: false hasContentIssue false

Computer modeling of ICF target chamber phenomena

Published online by Cambridge University Press:  09 March 2009

Gregory A. Moses
Affiliation:
Fusion Technology Institute, University of Wisconsin, 1500 Johnson Drive, Madison WI 53706
Robert R. Peterson
Affiliation:
Fusion Technology Institute, University of Wisconsin, 1500 Johnson Drive, Madison WI 53706

Abstract

The target chamber of an inertial confinement fusion (ICF) power plant or high-yield test facility must be designed to absorb the target produced Xrays and ions and survive the resulting effects. The target chamber conditions must be restored in fractions of a second for high repetition rate power applications. Computer modeling of these phenomena is essential because equivalent conditions cannot be produced in laboratory experiments prior to the first ignition of high-yield ICF targets. Choices of models are dictated by specific reactor design strategies. The two major strategies, gas protection and sacrificial first surfaces, are used as a guide to our discussion. Physical models for ion, electron, and X-ray deposition are discussed, along with physical and numerical modeling of the resulting phase changes intarget chamber structures. The hydrodynamics and radiative transfer in the target chamber vapors and plasmas are central topics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersen, H.H. & Ziegler, J.F. 1977 Hydrogen-Stopping Powers and Ranges in All Elements (Pergamon, New York).Google Scholar
Apruzese, J. et al. 1984 Phys. Rev. A 29, 246.CrossRefGoogle Scholar
Bai, R.Y. & Schrock, V.E. 1991 Fusion Tech. 19, 732.CrossRefGoogle Scholar
Bang, K.H. et al. 1991 Fusion Tech. 19, 716.CrossRefGoogle Scholar
Bartel, T.J. et al. 1986 Fusion Tech. 10, 1253.CrossRefGoogle Scholar
Bennett, B.I. et al. 1978 Los Alamos National Laboratory, Report LA-7130.Google Scholar
Biggs, F. &Lighthill, R. 1988 Sandia National Laboratories, Report SAND87–0070.Google Scholar
Blink, J.A. 1985 Lawrence Livermore National Laboratory, Report UCRL-53604.Google Scholar
Blink, J.A. & Hoover, W.C. 1985 Fusion Tech. 8, 1844.CrossRefGoogle Scholar
Böhne, D. et al. 1982 Nucl. Engr. and Design 73, 195.CrossRefGoogle Scholar
Bourque, R.F. et al. 1992 Fusion Tech. 21, 1465.CrossRefGoogle Scholar
Brown, M.D. & Moak, C.D. 1972 Phys. Rev. B 6, 90.CrossRefGoogle Scholar
Chen, X.M. & Schrock, V.E. 1991a Fusion Tech. 19, 721.CrossRefGoogle Scholar
Chen, X.M. & Schrock, V.E. 1991b Fusion Tech. 19, 727.CrossRefGoogle Scholar
Chen, X.M. et al. 1992a Fusion Tech. 21, 1520.CrossRefGoogle Scholar
Chen, X.M. et al. 1992b Fusion Tech. 21, 1531.CrossRefGoogle Scholar
Christiansen, J.P. et al. 1974 Comp. Phys. Comm. 7, 271.CrossRefGoogle Scholar
Crandall, D.H. 1992 Fusion Tech. 21, 1451.CrossRefGoogle Scholar
Engelstad, R.L. & Lovell, E.G. 1985 FusionTech. 8, 1184.Google Scholar
Gilligan, J. et al. 1989 Fusion Tech. 15, 522.CrossRefGoogle Scholar
Goel, B.. 1992 private communication.Google Scholar
Grady, D.E.. 1982 J. Appl. Phys. 53, 322.CrossRefGoogle Scholar
Griem, H.R.. 1974 Spectral Line Broadening by Plasmas (Academic Press, New York).Google Scholar
Heitler, W. 1944 The Quantum Theory of Radiation (Oxford, New York).Google Scholar
Hogan, W.J. et al. 1992 Physics Today 45(9), 42.CrossRefGoogle Scholar
Jackson, J.D. 1962 Classical Electrodynamics (Wiley, New York).Google Scholar
Kitagawa, Y. et al. 1992 Fusion Tech. 21, 1460.CrossRefGoogle Scholar
Koffman, L.D. et al. 1983 Phys. Fluids 27, 876.CrossRefGoogle Scholar
Labuntsov, D.A. & Kryukov, A.P. 1979 Int. J. Heat Mass Transfer 22, 989.CrossRefGoogle Scholar
Lee, R.W. 1990 User Manual for RATION (Lawrence Livermore National Laboratory).Google Scholar
Liu, J.C. et al. 1992 Fusion Tech. 21, 1514.CrossRefGoogle Scholar
MacFarlane, J.J. 1987 University of Wisconsin Fusion Technology Institute, Report UWFDM-750.Google Scholar
MacFarlane, J.J.& Wang, P. 1991 Phys. Fluids B 3, 3494.CrossRefGoogle Scholar
MacFarlane, J.J. et al. 1989 Phys. Fluids B 1, 635.CrossRefGoogle Scholar
MacFarlane, J.J. et al. 1990 InProceedings of the 13th IEEE Symposium on Fusion Engineering, 10 1989, Knoxville, TN, p. 746.CrossRefGoogle Scholar
MacFarlane, J.J. et al. 1991 Fusion Tech. 19, 703.CrossRefGoogle Scholar
McCarville, T.J. et al. 1981 University of Wisconsin Fusion Technology Institute, Report UWFDM-406.Google Scholar
Mehlhorn, T.A. 1981 J. Appl. Phys. 52, 6522.CrossRefGoogle Scholar
Mehlhorn, T.A. et al. 1983 Sandia National Laboratories, Report SAND83–1519.Google Scholar
Meier, W.R. et al. 1992 InProceedings of the 14th IEEE/NPSS Symposium on Fusion Engineering, 10 1991, San Diego, CA, p. 631.CrossRefGoogle Scholar
Mihalas, D. 1978 Stellar Atmospheres (W.H. Freeman, San Francisco).Google Scholar
Mihalas, D.. & Mihalas, B.W. 1984 Foundations ofRadiation Hydrodynamics (Oxford, New York).Google Scholar
Miller, R.B. 1982 An Introduction to the Physics of Intense Charged Particle Beams (Plenum, New York).CrossRefGoogle Scholar
Mohanti, R.B. & Gilligan, J.G. 1990 J. Appl. Phys. 68, 5044.CrossRefGoogle Scholar
Moir, R.W. 1991 Fusion Tech. 19, 617.CrossRefGoogle Scholar
Moir, R.W. 1992 Fusion Tech. 21, 1495.Google Scholar
Moir, R.W. et al. 1992 Fusion Tech. 21, 1492.CrossRefGoogle Scholar
Monsler, M. et al. 1981 Lawrence Livermore National Laboratory, Report UCRL-50021–80, pp. 9–4.Google Scholar
More, R.M. et al. 1988 Phys. Fluids 31, 3059.CrossRefGoogle Scholar
Moses, G. &Magelssen, G. 1977 University of Wisconsin Fusion Technology Institute, Report UWFDM-194.Google Scholar
Moses, G.A. & Peterson, R. 1980 Nucl. Fusion 20, 849.CrossRefGoogle Scholar
Moses, G.A. et al. 1985 Comp. Phys. Comm. 36, 249.CrossRefGoogle Scholar
Moses, G.A. et al. 1991 Phys. Fluids 3, 2324.CrossRefGoogle Scholar
Olson, R.E. et al. 1988 InProceedings of the 12th Symposium on Fusion Engineering, 10 1987, Monterey, CA, p. 1005.Google Scholar
Orth, C.D. 1986 Fusion Tech. 10, 1245.CrossRefGoogle Scholar
Orth, C.D. 1990 InProceedings of the 13th IEEE Symposium on Fusion Engineering, 10 1989, Knoxville, TN, p. 743.CrossRefGoogle Scholar
Peterson, R.R. 1986 Fusion Tech. 10, 1251.CrossRefGoogle Scholar
Peterson, R.R. 1990 InProceedings of the 13th IEEE Symposium on Fusion Engineering, 10 1989, Knoxville, TN, p. 754.CrossRefGoogle Scholar
Peterson, R.R. et al. 1988 University of Wisconsin Fusion Technology Institute, Report UWDFM-670.Google Scholar
Peterson, R.R. et al. 1991 University of Wisconsin Fusion Technology Institute, Report UWDFM-854.Google Scholar
Peterson, R.R. et al. 1992 InProceedings of the 14th IEEE/NPSS Symposium on Fusion Engineering, 10 1991, San Diego, CA, p. 400.CrossRefGoogle Scholar
Pitts, J.H. 1990 Lawrence Livermore National Laboratory, Report UCRL-LR 104546.Google Scholar
Pitts, J.H. & Tabak, M. 1991 Fusion Tech. 19, 640.CrossRefGoogle Scholar
Pong, L. et al. 1985 Nucl. Engr. and Design/Fusion 3, 47.CrossRefGoogle Scholar
Raffray, A.R. & Hoffman, M.A. 1986 Fusion Tech. 10, 1264.CrossRefGoogle Scholar
Richtmyer, R.D. & Morton, K.W. 1967 Difference Methods for Initial-Value Problems (Interscience, New York).Google Scholar
Ripin, B.H. et al. 1986 In Laser Interaction and Related Plasma Phenomena, Miley, G.H. and Hora, H., eds. (Plenum, New York).Google Scholar
Smith, M.W. & Weise, W. 1971 Astrophys J. Suppl. 23, 103.CrossRefGoogle Scholar
Soga, T. 1982 Phys. Fluids 25, 1978.CrossRefGoogle Scholar
Spielman, R.B. et al. 1989 In Proceedings of the 2nd International Conference on Dense Z-Pinches, Laguna Beach, CA (AIP, New York).Google Scholar
Spielman, R.B. et al. 1992 Bull. APS 37, 1578.Google Scholar
Spitzer, L. 1962 Physics of Fully Ionized Gases (Interscience, New York).Google Scholar
Sviatoslavsky, I.N. et al. 1990 In Proceedings of the 13th IEEE Symposium on Fusion Engineering, 10 1989, Knoxville, TN, p. 1416.CrossRefGoogle Scholar
Sviatoslavsky, I.N. et al. 1991 Fusion Tech. 19, 634.CrossRefGoogle Scholar
Sviatoslavsky, I.N. et al. 1992a In Proceedings of the 14th IEEE/NPSS Symposium on Fusion Engineering, 10 1991, San Diego, CA, p. 646.CrossRefGoogle Scholar
Sviatoslavsky, I.N. et al. 1992b Fusion Tech. 21, 1470.CrossRefGoogle Scholar
Thompson, S.L. & McGlaun, J.M. 1988 Sandia National Laboratories, Report SAND87–2763.Google Scholar
Tillack, M.S. et al. 1992 In Proceedings ofthe 14th IEEE/NPSS Symposium on Fusion Engineering, 10 1991, San Diego, CA, p.223.CrossRefGoogle Scholar
Tobin, M.T. 1991 Fusion Tech. 19, 679.CrossRefGoogle Scholar
Waganer, L.M. 1992 In Proceedings of the 14th IEEE/NPSS Symposium on Fusion Engineering, 10 1991, San Diego, CA, p. 636.CrossRefGoogle Scholar
Wang, P. et al. 1992 Phys. Rev. E. 48, 3934.CrossRefGoogle Scholar
Yasar, O. & Moses, G. 1991 Nucl. Fusion 31, 273.CrossRefGoogle Scholar
Yasar, O. & Moses, G. 1992 J. Comp. Physics 100, 38.CrossRefGoogle Scholar
Zel'dovich, Ya.B. & Raizer, Ya.P. 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York).Google Scholar