Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T19:44:42.745Z Has data issue: false hasContentIssue false

Computational optimization of indirect-driven targets for ignition on the Iskra-6 laser facility

Published online by Cambridge University Press:  30 August 2005

M.N. CHIZHKOV
Affiliation:
Russian Federal Nuclear Center, All-Russian Research Institute of Technical Physics, Snezhinsk, Russia
N.G. KARLYKHANOV
Affiliation:
Russian Federal Nuclear Center, All-Russian Research Institute of Technical Physics, Snezhinsk, Russia
V.A. LYKOV
Affiliation:
Russian Federal Nuclear Center, All-Russian Research Institute of Technical Physics, Snezhinsk, Russia
A.N. SHUSHLEBIN
Affiliation:
Russian Federal Nuclear Center, All-Russian Research Institute of Technical Physics, Snezhinsk, Russia
L.V. SOKOLOV
Affiliation:
Russian Federal Nuclear Center, All-Russian Research Institute of Technical Physics, Snezhinsk, Russia
M.S. TIMAKOVA
Affiliation:
Russian Federal Nuclear Center, All-Russian Research Institute of Technical Physics, Snezhinsk, Russia

Abstract

In Russia, the Iskra-6 laser facility with pulse energy of up to 300 kJ and nanosecond pulse duration was being planned (Kirillov et al., 2000). The possibility of thermonuclear ignition with this laser energy was a goal of the theoretical investigation at RFNC-VNIITF. Results of one-dimensional (1D) and two-dimensional (2D) modeling of indirect-driven targets for ignition on the Iskra-6 laser facility are presented. Sensitivity of cryogenic single-shell and non-cryogenic double-shell targets to radiation flux non-uniformity and shells roughness are studied.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was presented at the 28th ECLIM conference in Rome, Italy.

References

REFERENCES

Amendt, P., Colvin, J.D., Tipton, R.E., Hinkel, D.E., Edwards, M.J., Landen, O.L., Ramshaw, J.D., Suter, L.J., Varnum, W.S. & Watt, R.G. (2002). Phys. Plasmas 9, 22212233.CrossRef
Andre, M.L. (2000). Proc. Inertial Fusion Sciences and Application-99, pp. 3239. (Labaune, C., Hogan, W.J., Tanaka, K.A., Eds.). New York: Elsevier.
Avrorin, E.N. et al. (1997). Laser Part. Beams 15, 145149.
Barysheva, N.A., Zuev, A.I., Karlykhanov, N.G., Lykov, V.A. & Chernyakov, V.E. (1982). Zh. Vychislit. Mat. i Mat. Fiz. (in Russian) 22, 401410.
Bradley, P.A. & Wilson, D.C. (1999). Phys. Plasmas 6, 42934303.CrossRef
Campbell, E.M. & Hogan, J.W. (2000). Proc. Inertial Fusion Sciences and Application-99, pp. 918. (Labaune, C., Hogan, W.J., Tanaka, K.A., Eds.). New York: Elsevier.
Canaud, B., Fortin, X., Garaude, F., Meyer, C. & Phillippe, F. (2004). Progress in direct-drive fusion studies for the Laser Megajoule. Laser Part. Beams 22, 109114.Google Scholar
Galakhov, I.V., Garanin, S.G., Eroshenko, V.A., Kirillov, G.A., Kochemasov, G.G., Murugov, V.M., Rukavishnikov, N.N. & Sukharev, S.A. (1999). Fusion Eng. Design 44, 5156.
Karlykhanov, N.G., Lykov, V.A., Timakova, M.S. & Chizhkov, M.N. (2004). JETP Lett. 79, 2527.
Kirillov, G.A., Kochemasov, G.G., Bessarab, A.V., Garanin, S.G., Mkhitarian, L.S., Murugov, V.M., Sukharev, S.A. & Zhidkov, N.V. (2000). Status of laser fusion activity at VNIIEF (Arzamas-16). Laser Part. Beams 18, 219228.CrossRefGoogle Scholar
Lindl, J. (1995). Phys. Plasmas 2, 39334024.CrossRef
Neuvazhayev, V.E., Lykov, V.A., Ljagina, E.L., Murashkina, V.A., Podkorytova, A.F., Frolov, V.D. & Shushlebin, A.N. (1998). Phys. Plasmas 5, 10941103.CrossRef
Nikiforov, A.F., Novikov, V.G. & Uvarov, V.B. (2000). Quantum-Statistic Models of High-Temperature Plasma (in Russian). Moscow: Fizmatlit.
Shushlebin, A.N., Frolov V.D., &Lykov, V.A. (1995). Comput. Technol. (in Russian) 4, 336345.
Zuev, A.I. (1992). Zh. Vychislit. Mat. i Mat. Fiz. (in Russian) 32, 8296.