Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T05:41:53.585Z Has data issue: false hasContentIssue false

Comparison of fast ions production modes by short laser pulses

Published online by Cambridge University Press:  02 June 2005

C. STRANGIO
Affiliation:
Associazione ENEA-EURATOM sulla Fusione, C. R. ENEA Frascati, Frascati (RM), Italy
A. CARUSO
Affiliation:
Associazione ENEA-EURATOM sulla Fusione, C. R. ENEA Frascati, Frascati (RM), Italy

Abstract

Irradiation of solid targets by short laser pulses can result in a production of fast ions. In this paper, two production modes are discussed: the controlled amount of matter mode (CAM) and the open amount of matter mode (OAM). The CAM mode is based on laser energy transfer to a controlled amount of matter before the target becomes transparent to the laser light due to the gas-dynamical expansion. For the CAM mode, it is presented a model that allows determining the target parameters, the focusing conditions, and the pulse duration as a function of the laser pulse energy, of the aimed energy per nucleon and of the energy transfer efficiency to the target. The conditions to be this mode experimentally addressed are indicated. The OAM mode relies on the irradiation of a target with large ion content by a short laser pulse; in this case, a small amount of fast ions is emitted from the rear and lateral sides of the target depending on the laser pulse and focusing parameters. For this mode, observed in several experiments, a theoretical discussion is presented. Special attention is devoted to the target normal sheath acceleration (TNSA) and to expansion wave (EW) mechanisms. The EW process is discussed in the framework of a two-temperature isothermal model and some peculiar hydrodynamic processes are discussed.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J.E. & Andrews, J.G. (1970). A note on ion rarefaction waves. J. Plasma Physics 4, 187194.CrossRefGoogle Scholar
Allen, M., Sentoku, Y., Audebert, P., Blazevic, A., Cowan, T., Fuchs, J., Gauthier, J.C., Geissel, M., Hegelich, M., Karsch, S., Morse, E., Patel, P.K. & Roth, M. (2003). Proton spectra from ultraintense laser-plasma interaction with thin foils: Experiments, theory, and simulation. Phys. Plasmas 10, 32833289.CrossRefGoogle Scholar
Bezzerides, B., Forslund, D.W. & Lindman, E.L. (1978). Existence of rarefaction shocks in a laser-plasma corona. Phys. Fluids 21, 21792185.Google Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., Mackinnon, A.J., Hicks, D., Patel, P., Gizzi, L.A., Galimberti, M. & Clarke, R.J. (2002). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275.Google Scholar
Caruso, A., De Angelis, A., Gatti, G., Gratton, R. & Martellucci, S. (1970). Energetic ions produced by subnanosecond laser pulses. Phys. Lett. 33A, 336337.CrossRefGoogle Scholar
Caruso, A. & Gratton, R. (1971). On the possibility of producing 0.1 GeV ions by focusing ultrashort laser pulses on thin foils. Phys. Lett. 36A, 275276.Google Scholar
Caruso, A. & Strangio, C. (2001). Studies on nonconventional high-gain target design for ICF. Laser Part. Beams 19, 295308.Google Scholar
Clark, E.L., Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2000). Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 16541657.CrossRefGoogle Scholar
Cox, J.P. & Giuli, R.T. (1968). Principles of Stellar Structure. New York: Gordon and Breach.Google Scholar
Denavit, J. (1979). Collisionless plasma expansion into a vacuum. Phys. Fluids 22, 13841382.Google Scholar
Gitomer, S.J., Jones, R.D., Begav, F., Ehler, A.W., Kephart, J.F. & Kristal, R. (1986). Fast ions and hot electrons in the laser-plasma interaction. Phys. Fluids 29, 26792688.Google Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C., &Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762081.CrossRefGoogle Scholar
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89, 085002.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. (1959). Fluid Mechanics. London/New York/Paris/Los Angeles: Publishers.Google Scholar
Matsukado, K., Esirkepov, T., Kinoshita, K., Daido, H., Utsumi, T., Li, Z., Fukumi, A., Hayashi, Y., Orimo, S., Nishiuchi, M., Bulanov, S.V., Tajima, T., Noda, A., Iwashita, Y., Shirai, T., Takeuchi, T., Nakamura, S., Yamazaki, A., Ikegami, M., Mihara, T., Morita, A., Uesaka, M., Yoshii, K., Watanabe, T., Hosokai, T., Zhidkov, A., Ogata, A., Wada, Y. & Kubota, T. (2003). Energetic protons from a few-micron metallic foil evaporated by an intense laser pulse. Phys. Rev. Lett. 91, 215001.CrossRefGoogle Scholar
Pearlman, J.S. & Morse, R.L. (1978). Maximum expansion velocities of laser-produced plasmas. Phys. Rev. Lett. 40, 16521655.CrossRefGoogle Scholar
Roth, M., Blazevic, A., Geissel, M., Schlegel, T., Cowan, T.E., Allen, M., Gauthier, J.C., Audebert, P., Fuchs, J., Meyer-Ter-Vehn, J., Hegelich, M., Karsch, S. & Pukhov, A. (2002). Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. 5, 061301.CrossRefGoogle Scholar
Strangio, C., Andreoli, P.L., Cristofari, G., Dattola, A. & Di Giorgio, G. (2004). A study for target modification induced by the prepulse in petawatt-class light-matter interaction experiments. 28th ECLIM Proceedings.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., Mackinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.CrossRefGoogle Scholar