Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T03:16:04.309Z Has data issue: false hasContentIssue false

A comparative study of Cu–Ni Alloy using LIBS, LA-TOF, EDX, and XRF

Published online by Cambridge University Press:  28 November 2016

N. Ahmed
Affiliation:
National Centre for Physics, Quaid-i-Azam University Campus, 45320 Islamabad, Pakistan Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
R. Ahmed
Affiliation:
National Centre for Physics, Quaid-i-Azam University Campus, 45320 Islamabad, Pakistan
M. Rafiqe
Affiliation:
Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
M.A. Baig*
Affiliation:
National Centre for Physics, Quaid-i-Azam University Campus, 45320 Islamabad, Pakistan
*
Address correspondence and reprint requests to: M.A. Baig, National Centre for Physics, Quaid-i-Azam University Campus, 45320 Islamabad, Pakistan. E-mail: [email protected]; [email protected]

Abstract

LASER induced breakdown spectroscopy (LIBS) has been used for the quantitative analysis of Cu–Ni alloy of known composition (75% Cu, 25% Ni) using the one line calibration free-LIBS (OLCF-LIBS), self-calibration-LIBS (SC-LIBS), calibration free LIBS (CF-LIBS), time of flight-mass spectroscopy (TOF-MS), energy dispersive X-ray spectroscopy (EDX) and X-ray fluorescence spectroscopy (XRF). For the LIBS-based studies, the plasma was generated by focusing the beam of a Q-switched Nd:YAG laser (532 nm, pulse energy about 200 mJ, 5 ns pulse duration) while the sample was placed in air at an atmospheric pressure. Plasma temperature about (9500 ± 300) K was calculated by the Boltzmann plot method using the neutral lines of Cu and Ni whereas the electron number density was calculated (2.0 ± 0.5) × 1016 cm−3 from the Stark broadening of an isolated Cu line as well as using the relative intensities of the neutral and singly ionized optically thin lines in the Saha–Boltzmann equation. The elemental compositions determined by different LIBS methods and standard techniques are; OLCF-LIBS (69% Cu and 31% Ni), SC-LIBS (72% Cu and 28% Ni), CF-LIBS (74% Cu and 26% Ni), TOF (74% Cu and 26% Ni), EDX (75% Cu and 24.5% Ni), XRF (73% Cu and 24.7% Ni), and LA-TOF (74% Cu and 26% Ni). It is demonstrated that the CF-LIBS method gives compositions comparable with that determined by LA-TOF, EDX, or XRF, which is also in agreement with the certified reported composition.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilera, J.A., Aragon, C., Cristoforetti, G. & Tognoni, E. (2009). Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from a copper-based alloy laser-induced plasma. Spectrochim. Acta B 64, 685689.CrossRefGoogle Scholar
Ahmed, R. & Baig, M.A. (2009). A comparative study of single and double pulse laser induced breakdown spectroscopy. J. Appl. Phys. 106, 033307.Google Scholar
Ahmed, R. & Baig, M.A. (2015). A comparative study of enhanced emission in double pulse laser induced breakdown spectroscopy. Opt. Laser Technol. 65, 113118.Google Scholar
Ahmed, R., Iqbal, J. & Baig, M.A. (2015). Effects of laser wavelengths and pulse energy ratio on the emission enhancement in dual pulse LIBS. Laser Phys. Lett. 12, 066102066107.CrossRefGoogle Scholar
Andrea, E.D., Pagnotta, S., Grifoni, E., Legnaioli, S., Lorenzetti, G., Palleschi, V. & Lazzerini, B. (2015). A hybrid calibration free/artificial neural networks approach to the quantitative analysis of LIBS spectra. Appl. Phys. B 118, 353360.Google Scholar
Andrzej, W., Palleschi, V. & Israel, S. (2006). Laser Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications. New York: Cambridge University Press.Google Scholar
Babina, E.M., Ilinn, G.G., Konovalova, O.A., Salakhov, M.Kh. & Sarandaev, E.V. (2003). The complete calculation of stark broadening parameters for the neutral copper atoms spectral lines of 4s 2s-4p 2p0 and 4s2 2d-4p 2p0 multiplets in the dipole approximation. Publ. Astron. 76, 163166.Google Scholar
Baig, M.A., Qamar, A., Fareed, M.A., Anwar-ul-Haq, M. & Ali, R. (2012). Spatial diagnostics of the laser induced lithium fluoride plasma. Phys. Plasma 19, 063304.Google Scholar
Bassiotis, C., Diamantopoulou, A., Giannoudakos, A., Kalantzopoulou, F.R. & Kompitsas, M. (2001). Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy. Spectrochim. Acta B 56, 671683.Google Scholar
Borgia, I., Burgio, L.M.F., Corsi, M., Fantoni, R., Palleschi, V., Salvetti, A., Squarcialupi, M.S. & Togoni, E. (2000). Self-calibrated quantitative elemental analysis by laser-induced plasma spectroscopy: Application to pigment analysis. J. Cult. Herrit. 1, 281286.CrossRefGoogle Scholar
Bulajic, D., Cristoforetti, G., Corsi, M., Hidalgo, M., Legnaioli, S., Palleschi, V., Martins, J., McKay, J., Tozer, B., Wells, D., Wells, R., Harith, M.A., Salvetti, A., Tognoni, E., Green, S., Bates, D., Steiger, A., Fonseca, J. (2001). Diagnostics of high-temperature steel pipes in industrial environment by laser-induced breakdown spectroscopy technique. Spectrochim. Acta B 57, 11811192.CrossRefGoogle Scholar
Burakov, V.S. & Raikov, S.N. (2007). Quantitative analysis of alloys and glasses by a calibration-free method using laser-induced breakdown spectroscopy. Spectrochim. Acta B 62, 217223.CrossRefGoogle Scholar
Charfi, B. & Harith, M.A. (2002). Panoramic laser-induced breakdown spectrometry of water. Spectrochim. Acta B 54, 11411153.Google Scholar
Ciucci, A., Corsi, M., Palleschi, V., Rastelli, S., Salvetti, A. & Tognoni, E. (1999). New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl. Spectrosc. 53, 960964.Google Scholar
Cremers, D.A. & Radziemski, L.J. (2006). Handbook of Laser-Induced Breakdown Spectroscopy, Handbook of Laser-Induced Breakdown Spectroscopy. New York: Wiley.Google Scholar
Cristoforetti, G., Giacomo, A.D., Dell'Aglio, M., Legnaioli, S., Togoni, E., Palleschi, V. & Omenetto, N. (2010). Local thermodynamic equilibrium in laser induced breakdown spectroscopy: Beyond the Mcwhirter criterion. Spectrochim. Acta B 65, 8695.Google Scholar
De Giacomo, A., Dell'Aglio, M., De Pascale, O., Gaudiuso, R., Teghil, R., Santagata, A. & Parisi, G.P. (2007 a). ns- and fs-LIBS of copper-based-alloys: A different approach. Appl. Surf. Sci. 253, 76777681.CrossRefGoogle Scholar
De Giacomo, A., Dell'Aglio, M., De Pascale, O., Longo, S. & Capitelli, M. (2007 b). Laser induced breakdown spectroscopy on meteorites. Spectrochim. Acta B 62, 16061611.Google Scholar
El Sherbini, A.M. & Saad Al Aamer, A.A. (2012). Measurement of plasma parameters in laser-induced breakdown spectroscopy using Si-lines. World J. Nano Sci. Eng. 2, 206212.CrossRefGoogle Scholar
Fichet, P., Menut, D., Brennetot, R., Vors, E. & Rivoallan, A. (2003). Analysis by laser-induced breakdown spectroscopy of complex solids, liquids, and powders with an Echelle spectrometer. Appl. Spectrosc. 42, 60296035.Google Scholar
Galbacs, G., Gornushkin, I.B., Smith, B.W. & Winefordner, J.D. (2001). Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation. Spectrochim. Acta B 56, 11591173.CrossRefGoogle Scholar
Gomba, J.M., Angelo, C.D. & Bertuccelli, D. (2001). Spectroscopic characterization of laser induced breakdown in aluminum lithium alloy samples for quantitative determination of traces. Spectrochim. Acta B 56, 695705.CrossRefGoogle Scholar
Gupta, G.P., Suri, B.M., Verma, A., Sunderaraman, M., Unnikrishnan, V.K., Alti, K., Kartha, V.B. & Santhosh, C. (2011). Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy. J. Alloys Compd. 509, 37403745.CrossRefGoogle Scholar
Hafeez, S., Sheikh, N.M. & Baig, M.A. (2008). Spectroscopic studies of Ca plasma generated by the fundamental, second, and third harmonics of a Nd:YAG laser. Laser Part. Beams 26, 4150.Google Scholar
Hahn, D.W. & Omenetto, N. (2012). Laser-induced breakdown spectroscopy (LIBS), Part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 66, 347419.CrossRefGoogle Scholar
Harilal, S.S., Shay, B.O. & Tillah, M.S. (2005). Spectroscopic characterization of laser-induced tin plasma. J. Appl. Phys. 98, 01330610133067.CrossRefGoogle Scholar
Hohreiter, V. & Hahn, D.W. (2005). Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams. Anal. Chem. 77, 11181124.CrossRefGoogle ScholarPubMed
Joseph, M.R., Xu, N. & Majidi, V. (1994). Time resolved emission characteristics and temperature profiles of laser induced plasmas in helium. Spectrochim. Acta B 49, 89103.Google Scholar
Konjevic, R. & Konjević, N. (1986). Stark broadening and shift of neutral copper spectral lines. Fizica 18, 327.Google Scholar
Mohamed, W.T.Y. (2007). Calibration free laser-induced breakdown spectroscopy (LIBS) identification of seawater salinity. Opt. Appl. 37, 12.Google Scholar
NIST. Atomic Spectra Database. http://physics.nist.gov Google Scholar
Noll, R., Begemann, C.F., Brunk, M., Connemann, S., Meinhardt, C., Scharun, M., Sturm, V., Makowe, J. & Gehlen, C. (2014). Laser-induced breakdown spectroscopy expands into industrial applications. Spectrochim. Acta B 93, 4151.Google Scholar
Noll, R., Bette, H., Brysch, A., Kraushaar, M., Monch, I., Peter, L. & Sturm, V. (2001). Laser-induced breakdown spectrometry applications for production control and quality assurance in the steel industry. Spectrochim. Acta B 56, 637649.Google Scholar
Shaikh, N.M., Kalhoro, M.S., Hussain, A., Baig, M.A. (2013). Spectroscopic study of a lead plasma produced by the 1064 nm, 532 nm and 355 nm of a Nd:YAG laser. Spectrochim. Acta B 88, 198202.Google Scholar
Singh, V.K. & Rai, A.K. (2001). Prospects for laser-induced breakdown spectroscopy for biomedical applications. Lasers Med. Sci. 26, 673687.CrossRefGoogle Scholar
Tognoni, E., Cristoforetti, G., Legnaioli, S. & Palleschi, V. (2010). Calibration-free laser-induced breakdown spectroscopy: State of the art. Spectrochim. Acta B 65, 114.Google Scholar
Tognoni, E., Cristoforetti, G., Legnaioli, S., Palleschi, V., Salvetti, A., Mueller, M., Panne, U. & Gornushkin, I. (2007). A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma. Spectrochim. Acta B 62, 12871302.Google Scholar
Unnikrishnan, V.K., Alti, K., Kartha, V.B., Santhosh, C., Gupta, G.P. & Suri, B.M. (2010). Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions. Indian Acad. Sci. 24, 983993.Google Scholar
Unnikrishnan, V.K., Mridul, K., Nayak, R., Alti, K., Kartha, V.B., Santhosh, C. & Gupta, G.P. (2012). Calibration-free laser-induced breakdown spectroscopy for quantitative elemental analysis of materials. Pramana – J. Phys. 79, 299310.CrossRefGoogle Scholar
Winefordner, J.D., Gornushkin, I.B., Correll, T., Gibb, E., Smith, B.W. & Omenetto, N. (2004). Comparing several atomic spectrometric methods. J. Anal. At. Spectrom. 19, 10611083.Google Scholar