Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T11:58:40.799Z Has data issue: false hasContentIssue false

Combined effects of electronic trapping and non-thermal electrons on the expansion of laser produced plasma into vacuum

Published online by Cambridge University Press:  30 May 2014

Djemai Bara
Affiliation:
Theoretical Physics Laboratory, Faculty of Physics, USTHB, Algiers, Algeria
Mourad Djebli
Affiliation:
Theoretical Physics Laboratory, Faculty of Physics, USTHB, Algiers, Algeria
Djamila Bennaceur-Doumaz*
Affiliation:
Centre de Développement des Technologies Avancées, Algiers, Algeria
*
Address correspondence and reprint requests to: D. Bennaceur-Doumaz, Centre de Développement des Technologies Avancées, B.P. 17 Baba Hassen, 16303, Algiers, Algeria. E-mail: [email protected]

Abstract

In this work, the effect of electron trapping on the self-similar expansion of electron-ion laser plasma into vacuum, combined with the effect of non-thermal (energetic) electrons is studied. For this, a mono-dimensional, non-relativistic model where the ions are cold and governed by fluid equations is used. In the approximation of quasi-neutrality of charge, the obtained self-similar solution shows that for ion (plasma) behavior, the presence of an important number of non-energetic trapped electrons in the plasma potential wells has the effect of slowing down the expansion, whereas the phenomenon of presence of energetic electrons makes the influence of trapping effect on the self-similar expansion very weak even in the case of a very small number of energetic electrons. This study is of interest in the context of the investigation of mono-energetic ion beams from intense laser interactions with plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbasi, H. & Hakimi, H.P. (2008). Adiabatic evolution of phase space electron-hole in plasmas with super-thermal electrons. Plasma Phys. Contr. Fusion 50, 095007.CrossRefGoogle Scholar
Ahmadihojatabad, N., Abbasi, H. & Hakimi, H.P. (2010). Influence of super thermal and trapped electrons on oblique propagation of ion-acoustic waves in magnetized plasma. Phys. Plasmas 17, 112305.CrossRefGoogle Scholar
Alinejad, H., Sobhanian, S. & Mahmoodi, J. (2006). Nonlinear propagation of ion-acoustic waves in electron-positron-ion plasma with trapped electrons. Phys. Plasmas 13, 012304.CrossRefGoogle Scholar
Alinejad, H. (2010). Non-linear localized ion-acoustic waves in electron–positron–ion plasmas with trapped and non-thermal electrons. Astrophys. Space Sci. 325, 209215.CrossRefGoogle Scholar
Beilis, I. (2007). Laser plasma generation and plasma interaction with ablative target. Laser Part. Beams 25, 5363.CrossRefGoogle Scholar
Beilis, I. (2012). Modeling of the plasma produced by moderate energy laser beam interaction with metallic targets: Physics of the phenomena. Laser Part. Beams 30, 341356.CrossRefGoogle Scholar
Bennaceur-Doumaz, D. & Djebli, M. (2010). Modeling of laser induced plasma expansion in the presence of non-Maxwellian electrons. Phys. Plasmas 17, 074501.CrossRefGoogle Scholar
Bennaceur-Doumaz, D., Bara, D. & Djebli, M. (2011). On the electron distribution effect of an expanding laser ablated plasma. Advan. Mater. Res. 227, 5356.CrossRefGoogle Scholar
Bernstein, I.B., Green, J.M. & Kruskal, M.D. (1957). Exact nonlinear plasma oscillations. Phys. Rev. 10, 546550.CrossRefGoogle Scholar
Cairns, R.A., Mamum, A.A., Bingham, R., Boström, R., Dendy, R.O., Nairn, C.M. & Shukla, P.K. (1995). Electrostatic solitary structures in non-thermal plasmas. Geophys. Res. Lett. 22, 27092712.CrossRefGoogle Scholar
Cheng, J., Perrie, W., Wub, B., Tao, S., Edwardson, S.P., Dearden, G. & Watkins, K.G. (2009). Ablation mechanism study on metallic materials with a 10ps laser under high fluence. Appl. Surf. Sci. 255, 81718175.CrossRefGoogle Scholar
Daido, H., Nishiuchi, M. & Pirozhkov, A.S. (2012). Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401.CrossRefGoogle ScholarPubMed
Gurevich, A.V. (1968). Distribution of captured particles in a potential well in the absence of collisions. Sov. Phys. JETP 26, 575580.Google Scholar
Gurevich, A., Anderson, D. & Wilhelmsson, H. (1979). Ion acceleration in an expanding rarefied plasma with non-maxwellian electrons. Phys. Rev. Lett. 42, 769.CrossRefGoogle Scholar
Gurevich, A.V. & Meshcherkin, A.P. (1981). Ion acceleration in an expanding plasma. Sov. Phys. JETP 53, 937.Google Scholar
Hakimi Pajouh, H. & Abbasi, H. (2002). Modulational instability of the electron cyclotron waves in an adiabatic wave-particle interaction. Plasma Phys. 7, 112114.Google Scholar
Hau, L.-N. & Fu, W.-Z. (2007). Mathematical and physical aspects of kappa velocity distribution. Phys. Plasmas 14, 110702.CrossRefGoogle Scholar
Huang, Y.X., Duan, Y.Bi., Lan, X., Wang, N., Tang, X. & He, Y. (2008). Energetic ion acceleration with a non-Maxwellian hot-electron tail. Appl. Phys. Lett. 92, 141504.CrossRefGoogle Scholar
Islam, S.A., Bandyopadhyay, A. & Das, K.P. (2010). Ion-acoustic double layers in a magnetized low-beta plasma consisting of warm adiabatic ions, non-thermal electrons and electrons with a vortex-like distribution. Phys. Scr. 82, 045505.CrossRefGoogle Scholar
Itina, T.E., Hermann, J., Delaporte, P. & Sentis, M. (2002). Laser-generated plasma plume expansion: Combined continuous-microscopic modelling. Phys. Rev. E 66, 066406.CrossRefGoogle Scholar
Ivlev, A.V. & Fortov, V.E. (1999). One-dimensional plasma expansion into a vacuum in the field of an electromagnetic wave. Phys. Plasmas 6, 15081514.CrossRefGoogle Scholar
Kiefer, T., Schlege, T. & Kaluza, M.C. (2013). Plasma expansion into vacuum assuming a steplike electron energy distribution. Phys. Rev. E 87, 043110.CrossRefGoogle ScholarPubMed
Landau, L.D. & Lifshitz, E.M. (1981). Physical Kinetics. New York: Pergamon.Google Scholar
Leubner, M.P. (2004). Fundamental issues on kappa-distributions in space plasmas and interplanetary proton distributions. Phys. Plasmas 11, 13081316.CrossRefGoogle Scholar
Macchi, A. (2013). A superintense Laser-Plasma Interaction Theory Primer. New York: Springer.CrossRefGoogle Scholar
Mamun, A. (1997). Effects of ion temperature on electrostatic solitary structures in nonthermal plasmas. Phys. Rev. E 55, 18521857.CrossRefGoogle Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.CrossRefGoogle ScholarPubMed
Mora, P. (2005). Thin-foil expansion into a vacuum. Phys. Rev. E 72, 056401.CrossRefGoogle ScholarPubMed
Mora, P. & Grismayer, T. (2009). Rarefaction acceleration and kinetic effects in thin-foil expansion into a vacuum. Phys. Rev. Lett. 102, 145001.CrossRefGoogle ScholarPubMed
Passoni, M., Bertagna, L. & Zani, A. (2010). Energetic ions from next generation ultraintense ultrashort lasers: Scaling laws for target normal sheath acceleration. Nucl. Inst. Meth. Phys. Res. A 620, 4650.CrossRefGoogle Scholar
Pearlman, J.S. & Morse, R.L. (1978). Maximum expansion velocities of laser-produced plasmas. Phys. Rev. Lett. 40, 16521655.CrossRefGoogle Scholar
Sack, Ch. & Schamel, H. (1987). Plasma expansion into vacuum- a hydrodynamic approach. Phys. Rpts. 156, 311395.CrossRefGoogle Scholar
Schamel, H. (1979). Role of trapped particles and waves in plasma solitons-theory and application. Phys. Scr. 20, 306316.CrossRefGoogle Scholar
Shorokhov, O. (2006). Generation and propagation of energetic particles in relativistic laser-matter interactions. PhD thesis, University of Duesseldorf, Germany.Google Scholar
Shoub, E.C. (1983). Invalidity of local thermodynamic equilibrium for electrons in the solar transition region. I. Fokker-Planck results. Astrophys. J. 266, 339369.CrossRefGoogle Scholar
Tang, R.-A. & Xue, J.-K. (2004). Nonthermal electrons and warm ions effects on oblique modulation of ion-acoustic waves. Phys. Plasmas 11, 39393944.CrossRefGoogle Scholar
Volosevich, A.V., Meister, C.V. & Zhestkov, S.V. (2006). Theoretical model and experimental diagnostics of nonlinear electrostatic structures in space plasma. Adv. Space Res. 37, 569575.CrossRefGoogle Scholar
Yu, M.Y. & Luo, H. (1995). Adiabatic self-similar expansion of dust grains in a plasma. Phys. Plasmas 2, 591593.CrossRefGoogle Scholar
Zel'dovich, Ya.B. & Raizer, Yu.P. (1966). Physics of Shock Waves and High-Temperature Phenomena. New York: Academic Press.Google Scholar