Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T18:45:17.140Z Has data issue: false hasContentIssue false

Collimated proton beams by ultra-short, ultra-intense laser pulse interaction with a foil–ramparts target

Published online by Cambridge University Press:  29 October 2015

Huan Wang
Affiliation:
Center for Applied Physics and Technology, Peking University, Beijing 100871, China Institute of Plasma Physics and Fusion, Peking University, Beijing 100871, China Key Laboratory of High Energy Density Physics Simulation (HEDPS) of the Ministry of Education, Peking University, Beijing 100871, China
Lihua Cao*
Affiliation:
Center for Applied Physics and Technology, Peking University, Beijing 100871, China Key Laboratory of High Energy Density Physics Simulation (HEDPS) of the Ministry of Education, Peking University, Beijing 100871, China Institute of Applied Physics and Computational Mathematics, Beijing 100088, China IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
X.T. He
Affiliation:
Center for Applied Physics and Technology, Peking University, Beijing 100871, China Key Laboratory of High Energy Density Physics Simulation (HEDPS) of the Ministry of Education, Peking University, Beijing 100871, China Institute of Applied Physics and Computational Mathematics, Beijing 100088, China Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027, China
*
Address correspondence and reprint requests to: Lihua Cao and X.T. He, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China. E-mail: [email protected] and [email protected]

Abstract

A foil–ramparts target interaction with an ultra-short, ultra-intense laser pulse (pulse duration between 10−12 and 10−15 s, intensity above 1018 W cm−2) to produce proton beams with controlled divergence and concentrated energy density in target normal sheath acceleration regime is studied. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulations show that the foil–ramparts target helps to reshape the sheath electric field and generate a transverse quasi-static electric field of ~6.7 TV m−1 along the inner wall of the ramparts. The transverse electric field suppresses the transverse expansion of the proton beam effectively, as it tends to force the produced protons to focus inwards to the central axis, resulting in controlled divergence and concentrated energy density compared with that of a single plain target. The dependence of proton beam divergence on length of the rampart h is investigated in detail. A rough estimation of h ranges depending on dimensionless parameter a0 of the incident laser is also given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bulanova, S.V., Esirkepovb, T., Khoroshkovc, V.S., Kuznetsovb, A.V. & Pegorarod, F. (2008). Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 2–3, 240247.CrossRefGoogle Scholar
Chen, M., Pukhov, A., Sheng, Z.M. & Yan, X.Q. (2008 a). Laser mode effects on the ion acceleration during circularly polarized laser pulse interaction with foil targets. Phys. Plasmas 15, 113103.CrossRefGoogle Scholar
Chen, M., Sheng, Z.M., Zheng, J., Ma, Y.Y. & Zhang, J. (2008 b). Development and application of multi-dimensional particle-in-cell codes for investigation of laser plasma interactions. Chin. J. Comput. Phys. 25, 43.Google Scholar
Gibbon, P. (2004). Short Pulse Interactions with Matter. pp. 180184. London: Imperial College Press.Google Scholar
He, M.-Q., Dong, Q.-L., Sheng, Z.-M., Weng, S.-M., Chen, M., Wu, H.-C. & Zhang, J. (2007). Acceleration dynamics of ions in shocks and solitary waves driven by intense laser pulses. Phys. Rev. E 76, 035402.CrossRefGoogle ScholarPubMed
Ledingham, K.W.D., McKenna, P. & Singhal, R.P. (2003). Applications for nuclear phenomena generated by ultra-intense lasers. Science 300, 1107.CrossRefGoogle ScholarPubMed
Nakamura, M., Kawata, S., Sonobe, R., Kong, Q., Miyazaki, S., Onuma, N. & Kikuchi, T. (2007). Robustness of a tailored hole target in laser-produced collimated proton beam generation. J. Appl. Phys. 101, 113305.CrossRefGoogle Scholar
Ni, P.A., Lund, S.M., McGuffey, C., Alexander, N., Aurand, B., Barnard, J.J., Beg, F. N., Bellei, C., Bieniosek, F.M., Brabetz, C., Cohen, R.H., Kim, J., Neumayer, P., Roth, M. & Logan, B.G. (2013). Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils. Phys. Plasmas 20, 083111.CrossRefGoogle Scholar
Qiao, B., Foord, M.E., Wei, M.S., Stephens, R.B., Key, M., McLean, H. & Beg, F.N. (2013). Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers. Phys. Rev. E 87, 013108.CrossRefGoogle ScholarPubMed
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G., & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laserpiston regime. Phys. Rev. Lett. 92, 175003.CrossRefGoogle ScholarPubMed
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436.CrossRefGoogle ScholarPubMed
Robinson, A.P.L. & Gibbon, P. (2007). Production of proton beams with narrow-band energy spectra from laser-irradiated ultrathin foils. Phys. Rev. E 75, 015401.CrossRefGoogle ScholarPubMed
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., McCanny, T., Mora, P., Neely, D., Wahlstrom, C.-G., Zepf, M. & McKennna, P. (2007). Scaling of proton acceleration driven by petawatt–laser–plasma interactions. Nat. Phys. 3, 58.CrossRefGoogle Scholar
Santala, M.I.K., Zepf, M., Beg, F.N., Clark, E.L., Dangor, A.E., Krushelnick, K., Tatarakis, M., Watts, I., Ledingham, K.W.D., McCanny, T., Spencer, I., Machacek, A.C., Allott, R., Clarke, R.J. & Norreys, P.A. (2001). Production of radioactive nuclides by energetic protons generated from intense laser–plasma interactions. Appl. Phys. Lett 78, 19.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Wang, H.Y., Yan, X.Q. & Zepf, M. (2014). Collimated proton acceleration in light sail regime with a tailored pinhole target. Phys. Plasmas 21, 063113.CrossRefGoogle Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542.CrossRefGoogle Scholar
Yan, X.Q., Lin, C., Sheng, Z.M., Guo, Z.Y., Liu, B.C., Lu, Y.R., Fang, J.X. & Chen, J.E. (2008). Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett. 100, 135003.CrossRefGoogle ScholarPubMed
Yan, X.Q., Wu, H.C., Sheng, Z.M., Chen, J.E. & Meyer-ter-Vehn, J. (2009). Self-organizing GeV, nanocoulomb, collimated proton beam from laser foil interaction at 7 × 1021 W/cm2. Phys. Rev. Lett. 103, 135001.CrossRefGoogle ScholarPubMed
Yin, L., Albright, B.J., Hegelich, B.M., & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar
Yu, T.P., Ma, Y.Y., Chen, M., Shao, F.Q., Yu, M.Y., Gu, Y.Q. & Yin, Y. (2009). Quasimonoenergetic proton beam from ultraintense-laser irradiation of a target with holed backside. Phys. Plasmas 16, 033112.CrossRefGoogle Scholar