Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T23:42:43.598Z Has data issue: false hasContentIssue false

Collimated proton beam generation from ultraintense laser-irradiated hole target

Published online by Cambridge University Press:  17 June 2010

X.H. Yang
Affiliation:
Department of Physics, National University of Defense Technology, Changsha, China
Y.Y. Ma*
Affiliation:
Department of Physics, National University of Defense Technology, Changsha, China Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, China Center for Optical Research and Education, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
F.Q. Shao
Affiliation:
Department of Physics, National University of Defense Technology, Changsha, China
H. Xu
Affiliation:
National Laboratory Parallel and Distributed Processing, National University of Defense Technology, Changsha, China
M.Y. Yu
Affiliation:
Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China Institut für Theoretische Physik I, Ruhr-Universität Bochum, Bochum, Germany
Y.Q. Gu
Affiliation:
Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, China
T.P. Yu
Affiliation:
Department of Physics, National University of Defense Technology, Changsha, China
Y. Yin
Affiliation:
Department of Physics, National University of Defense Technology, Changsha, China
C.L. Tian
Affiliation:
Department of Physics, National University of Defense Technology, Changsha, China
S. Kawata
Affiliation:
Center for Optical Research and Education, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
*
Address correspondence and reprint requests to: Y.Y. Ma, Department of Physics, National University of Defense Technology, Changsha 410073, China. E-mail: [email protected]

Abstract

Collimated proton beams from laser interaction with a slab having a hole on its backside are investigated using particle-in-cell simulation. The hot target electrons driven by the laser expand rapidly into the hole. However, at the hole's corners the electrons are strongly compressed and an intense electron jet is emitted from each corner, tightly followed by the ions. The plasma jets focus and collimate along the axis of the hole and can propagate without divergence within the hole. The effect of the hole diameter on the collimated proton beam is considered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A., Platonov, K. & Kawata, S. (2009). Ion acceleration by short high intensity laser pulse in small target sets. Laser Part. Beams 27, 449457.CrossRefGoogle Scholar
Bin, J.H., Lei, A.L., Yang, X.Q., Huang, L.G., Yu, M.Y., Yu, W. & Tanaka, K.A. (2009). Quasi-monoenergetic proton beam generation from a double-layer solid target using an intense circularly polarized laser. Laser Part. Beams 27, 485490.CrossRefGoogle Scholar
Birkhoff, G., Macdougall, D.P., Pugh, E.M. & Taylor, G. (1948). Explosives with lined cavities. J. Appl. Phys. 19, 563582.CrossRefGoogle Scholar
Borghesi, M., Campbell, D.H., Shciavi, A., Willi, O., Mackinnon, A.J., Hicks, D., Patel, P., Gizzi, L.A., Galimberti, M. & Clarke, R.J. (2002). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275.CrossRefGoogle Scholar
Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412439.CrossRefGoogle Scholar
Ceccotti, T., Lévy, A., Popescu, H., Réau, F., D'oliveira, P., Monot, P., Geindre, J.P., Lefebvre, E. & Martin, P. (2007). Proton acceleration with high-intensity ultrahigh-contrast laser pulses. Phys. Rev. Lett. 99, 185002-1/185002-4.CrossRefGoogle ScholarPubMed
Clark, E.L., Krushelnick, K., Davies, J.R., Zepf, M., Tatarakis, M., Beg, F.N., Machacek, A., Norreys, P.A., Santala, M.I.K., Watts, I. & Dangor, A.E. (2000). Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84, 670673.CrossRefGoogle ScholarPubMed
D'Humières, E., Lefebvre, E., Gremillet, L. & Malka, V. (2005). Proton acceleration mechanisms in high-intensity laser interaction with thin foils. Phys. Plasmas 12, 062704-1/062704-13.Google Scholar
Grun, J., Laming, M., Manck, C., Donnelly, D.W., Covington, B.C., Fischer, R.P., Velikovich, A. & Khokhlov, A. (2003). Laser- plasma simulations of astrophysical phenomena and novel applications to semiconductor annealing. Laser Part. Beams 21, 529534.CrossRefGoogle Scholar
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernández, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nature (London) 439, 441444.CrossRefGoogle ScholarPubMed
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects. Laser Part. Beams 27, 207222.CrossRefGoogle Scholar
Kaluza, M., Schreiber, J., Santala, M.I.K., Tsakiris, G.D., Eidmann, K., Meyer-Ter-Vehn, J. & Witte, K.J. (2004). Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 045003-1/045003-4.CrossRefGoogle ScholarPubMed
Kar, S., Markey, K., Simson, P.T., Bellei, C., Green, J.S., Nagel, S.R., Kneip, S., Carroll, D.C., Dromey, B., Willingale, L., Clark, E.L., Makenna, P., Najmudin, Z., Krushelnick, K., Norreys, P., Clarke, R.J., Neely, D., Borghesi, M. & Zepf, M. (2008). Dynamic control of laser-produced proton beams. Phys. Rev. Lett. 100, 105004-1/105004-4.CrossRefGoogle ScholarPubMed
Klimo, O., Psikal, J., Limpouch, J. & Tikhonchuk, V.T. (2008). Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. ST Accel. Beams 11, 031301-1/031301-14.CrossRefGoogle Scholar
Láska, L., Jungwirth, K., Krása, J., Krouský, E., Pfeifer, M., Rohlena, K., Velyhan, A., Ullschmied, J., Gammino, S., Torrisi, L., Badziak, J., Parys, P., Rosinski, M., Ryć, L. & Wolowski, J. (2008). Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities. Laser and Part. Beams 26, 555565.CrossRefGoogle Scholar
Ledingham, K.W.D., McKenna, P. & Singhal, R.P. (2003). Application for nuclear phenomena generated by ultra-intense laser. Science 300, 11071111.CrossRefGoogle Scholar
Liu, M.P., Wu, H.C., Xie, B.S., Liu, J., Wang, H.Y. & Yu, M.Y. (2008). Energetic collimated ion bunch generation from an ultraintense laser interacting with thin concave targets. Phys. Plasmas 15, 063104-1/063104-8.CrossRefGoogle Scholar
Ma, Y.Y., Sheng, Z.M., Gu, Y.Q., Yu, M.Y., Yin, Y., Shao, F.Q., Yu, T.P. & Chang, W.W. (2009). High-quality MeV protons from laser interaction with umbrellalike cavity target. Phys. Plasmas 16, 034502-1/034502-4.CrossRefGoogle Scholar
Ma, Y.Y., Sheng, Z.M., Li, Y.T., Chang, W.W., Yuan, X.H., Chen, M., Wu, H.C., Zheng, J. & Zhang, J. (2006). Dense quasi-monoenergetic attosecond electron bunches from laser interaction with wire and slice targets. Phys. Plasmas 13, 110702-1/110702-4.CrossRefGoogle Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002-1/185002-4.CrossRefGoogle ScholarPubMed
Nakamura, M., Kawata, S., Sonobe, R., Kong, Q., Miyazaki, S., Onuma, N. & Kikuchi, T. (2007). Robustness of a tailored hole target in laser-produced collimated proton beam generation. J. Appl. Phys. 101, 113305-1/113305-7.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnürer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Nikitin, S.P., Grun, J., Aglitskiy, Y.Manka, C., Zabetakis, D., Velikovich, A.L. & Millerl, C. (2008). Production of cumulative jets by ablatively-driven implosion of hollow cones and wedges. Phys. Plasmas 15, 050703-1/050703-4.CrossRefGoogle Scholar
Okada, T., Andreev, A.A., Mikado, Y. & Okubo, K. (2006). Energetic proton acceleration and bunch generation by ultraintense laser pulses on the surface of thin plasma targets. Phys. Rev. E 74, 026401-1/026401-5.CrossRefGoogle ScholarPubMed
Okihara, S., Sentoku, Y., Sueda, K., Shimizu, S., Sato, F., Miyanaga, N., Mima, K., Izawa, Y., Iida, T. & Sakabe, S. (2002). Energetic proton generation in a thin plastic foil irradiated by intense femtosecond lasers. J. Nucl. Sci. Technol. 39, 15.CrossRefGoogle Scholar
Pegoraro, F., Atzeni, S., Borghesi, M., Bulanov, S., Esirkepov, T., Honrubia, J., Kato, Y., Khoroshkov, V., Nishihara, K., Tajama, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high-power laser-plasma interaction and their application. Laser Part. Beams 22, 1924.CrossRefGoogle Scholar
Remington, B.A., Arnet, D., Drake, R.P. & Takabe, H. (1999). Modeling astrophysical phenomena in the laboratory with intense laser. Science 284, 14881493.CrossRefGoogle Scholar
Robinson, A.P.L. & Gibbon, P. (2007). Production of proton beams with narrow-band energy spectra from laser-irradiated ultrathin foils. Phys. Rev. E 75, 015401-1/015401-4.CrossRefGoogle ScholarPubMed
Schwoerer, H., Pfotenhauer, S., Jächkel, O., Amthor, K.U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K.W.D. & Esirkepov, T. (2006). Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature (London) 439, 445448.CrossRefGoogle ScholarPubMed
Sonobe, R., Kawata, S., Miyazaki, S., Nakamura, M. & Kikuchi, T. (2005). Suppression of transverse proton beam divergence by controlled electron cloud in laser-plasma interactions. Phys. Plasmas 12, 073104-1/073104-6.CrossRefGoogle Scholar
Toncian, T., Borghesi, M., Fuchs, J., D'Humieres, E., Antici, P., Audebert, P., Brambrink, E., Cecchetti, C.A., Pipahl, A., Romagnani, L. & Willi, O. (2006). Ultrafast laser-driven microlens to focus and energy-select Mega-electron volt protons. Science 312, 410413.CrossRefGoogle ScholarPubMed
Wang, X., Yu, W., Yu, M.Y., Senscha, V.K., Xu, H., Wang, J.W., Yuan, X. & Sheng, Z.M. (2009). Efficient acceleration of a small dense plasma pellet by consecutive action of multiple short intense laser pulses. Laser Part. Beams 27, 629634.CrossRefGoogle Scholar
Wilks, S.C., Landon, A.B., Cowan, T.E., Roth, M., Hatchett, S., Key, M.H., Pennington, D., Mackinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.CrossRefGoogle Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra intense laser pulse. Phys. Rev. Lett. 69, 13831386.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Hegelich, B.M., Bowers, K.J., Flippo, K.A., Kwan, T.J.T. & Fernández, J.C. (2007). Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasmas 14, 056706-1/056706-8.CrossRefGoogle Scholar
Yu, T.P., Chen, M. & Pukhov, A. (2009 a). High quality GeV proton beams from a density-modulated foil target. Laser Part. Beams 27, 611617.CrossRefGoogle Scholar
Yu, T.P., Ma, Y.Y., Chen, M., Shao, F.Q., Yu, M.Y., Gu, Y.Q. & Yin, Y. (2009 b). Quasimonoenergetic proton beam from ultraintense-laser irradiation of a target with holed backside. Phys. Plasmas 16, 033112-1/033112-6.CrossRefGoogle Scholar