Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T23:24:48.188Z Has data issue: false hasContentIssue false

Coherently enhanced radiation reaction effects in laser-vacuum acceleration of electron bunches

Published online by Cambridge University Press:  19 October 2010

P.W. Smorenburg*
Affiliation:
Eindhoven University of Technology, Department of Applied Physics, Eindhoven, The Netherlands
L.P.J. Kamp
Affiliation:
Eindhoven University of Technology, Department of Applied Physics, Eindhoven, The Netherlands
G.A. Geloni
Affiliation:
European XFEL GmbH, Hamburg, Germany
O.J. Luiten
Affiliation:
Eindhoven University of Technology, Department of Applied Physics, Eindhoven, The Netherlands
*
Address correspondence and reprint requests to: P.W. Smorenburg, Eindhoven University of Technology, Department of Applied Physics, CQT Group P.O. Box 513, 5600 MB, Eindhoven, The Netherlands. E-mail: [email protected]

Abstract

The effects of coherently enhanced radiation reaction on the motion of subwavelength electron bunches in interaction with intense laser pulses are analyzed. The radiation reaction force behaves as a radiation pressure in the laser beam direction, combined with a viscous force in the perpendicular direction. Due to Coulomb expansion of the electron bunch, coherent radiation reaction takes effect only in the initial stage of the laser-bunch interaction while the bunch is still smaller than the wavelength. It is shown that this initial stage can have observable effects on the trajectory of the bunch. By scaling the system to larger bunch charges, the radiation reaction effects are strongly increased. On the basis of the usual equation of motion, this increase is shown to be such that radiation reaction may suppress the radial instability normally found in ponderomotive acceleration schemes, thereby enabling the full potential of laser-vacuum electron bunch acceleration to GeV energies. However, the applicability of the used equation of motion still needs to be validated experimentally, which becomes possible using the presented experimental scheme.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham, M. (1923). Elektromagnetische Theorie der Strahlung. Leipzig: Teubner.Google Scholar
Ammosov, M.V. (1991). Influence of the Coulomb repulsion between electrons on their energy spectrum in the case of the nonlinear surface photoeffect. J. Opt. Soc. Am. B 8, 22602264.CrossRefGoogle Scholar
Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J. & Patel, P.K. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412439.CrossRefGoogle Scholar
Bulanov, S.V., Esirkepov, T.Z., Koga, J. & Tajima, T. (2004). Interaction of electromagnetic waves with plasma in the radiation-dominated regime. Plasma Phys. Reports 30, 196213.CrossRefGoogle Scholar
Chen, L.M., Park, J.J., Hong, K.-H., Choi, I.W., Kim, J.L., Zhang, J. & Nam, C.H. (2002). Measurement of energetic electrons from atomic clusters irradiated by intense femtosecond laser pulses. Phys. Plasmas 9, 35953599.CrossRefGoogle Scholar
Dirac, P.A.M. (1938). Classical theory of radiating electrons. Proc. Royal Soc. London A 167, 148169.Google Scholar
Dodin, I.Y. & Fisch, N.J. (2003). Relativistic electron acceleration in focused laser fields after above-threshold ionization. Phys. Rev. E 68, 056402.CrossRefGoogle ScholarPubMed
Fennel, T., Döppner, T., Passig, J., Schaal, C., Tiggesbäumker, J. & Meiwes-Broer, K.-H. (2007). Plasmon-enhanced electron acceleration in intense laser metal-cluster interactions. Phys. Rev. Lett. 98, 143401.CrossRefGoogle ScholarPubMed
Ford, G.W. & O'Connell, R.F. (1991). Radiation reaction in electrodynamics and the elimination of runaway solutions. Phys. Lett. A 157, 217220.CrossRefGoogle Scholar
Ford, G.W. & O'Connell, R.F. (1993). Relativistic form of radiation reaction. Phys. Lett. A 174, 182184.CrossRefGoogle Scholar
Fukuda, Y., Akahane, Y., Aoyama, M., Hayashi, Y., Homma, T., Inoue, N., Kando, M., Kanazawa, S., Kiriyama, H., Kondo, S., Kotaki, H., Masuda, S., Mori, M., Yamazaki, A., Yamakawa, K., Echkina, E.Yu., Inovenkov, I.N., Koga, J. & Bulanov, S.V. (2007). Ultrarelativistic electron generation during the intense, ultrashort laser pulse interaction with clusters. Phys. Lett. A 363, 130135.CrossRefGoogle Scholar
Galkin, A.L., Egorov, V.A., Kalashnikov, M.P., Korobkin, V.V., Romanovsky, M.Yu., Shiryaev, O.B. & Trofimov, V.A. (2009). Energy distribution of electrons expelled from relativistically intense laser beam. Contrib. Plasma Phys. 49, 544549.CrossRefGoogle Scholar
Hartemann, F.V., Fochs, S.N., Le Sage, G.P. Jr., Luhmann, N.C., Woodworth, J.G., Perry, M.D., Chen, Y.J. & Kerman, A.K. (1995). Nonlinear ponderomotive scattering of relativistic electrons by an intense field at focus. Phys. Rev. E 51, 48334843.CrossRefGoogle ScholarPubMed
Heras, J.A. & O'Connell, R.F. (2006). Generalization of the Schott energy in electrodynamic radiation theory. Am. J. Phys. 74, 150153.CrossRefGoogle Scholar
Hora, H., Hoelss, M., Scheid, W., Wang, J.W., Ho, Y.K., Osman, F. & Castillo, R. (2000). Principle of high accuracy for the nonlinear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities. Laser Part. Beams 18, 135144.CrossRefGoogle Scholar
Il'in, A.S., Kulagin, V.V. & Cherepenin, V.A. (2001). Acceleration of dense electron bunches at the front of a high-power electromagnetic wave. Plasma Phys. Reports 27, 10481056.CrossRefGoogle Scholar
Jackson, J.D. (1999). Classical Electrodynamics, 3rd ed.. New York: Wiley & Sons.CrossRefGoogle Scholar
Kibble, T.W.B. (1966). Mutual refraction of electrons and photons. Phys. Rev. 150, 10601069.CrossRefGoogle Scholar
Krainov, V.P. & Smirnov, M.B. (2002). Cluster beams in the super-intense femtosecond laser pulse. Phys. Reports 370, 237331.CrossRefGoogle Scholar
Kulagin, V.V., Cherepenin, V.A. & Suk, H. (2004). Compression and acceleration of dense electron bunches by ultraintense laser pulses with sharp rising edge. Phys. Plasmas 11, 52395249.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. (1975). Classical Theory of Fields, 4th rev. ed. Oxford: Pergamon.Google Scholar
Leemans, W.P., Nagler, B., Gonsalves, A.J., Tóth, CS., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B. & Hooker, S.M. (2006). GeV electron beams from a centimetre-scale accelerator. Nature Phys. 2, 696699.CrossRefGoogle Scholar
Liseykina, T.V., Pirner, S. & Bauer, D. (2010). Relativistic attosecond electron bunches from laser-illuminated droplets. Phys. Rev. Lett. 104, 095002.CrossRefGoogle ScholarPubMed
Lorentz, H.A. (1916). The Theory of Electrons. Leipzig: Teuber.Google Scholar
Maksimchuk, A., Gu, S., Flippo, K. & Umstadter, D. (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 41084111.CrossRefGoogle ScholarPubMed
Malka, V., Faure, J., Gauduel, Y.A., Lefebvre, E., Rousse, A. & Phuoc, K.T. (2008). Principles and applications of compact laser-plasma accelerators. Nature Phys. 4, 447453.CrossRefGoogle Scholar
Medina, R. (2009). Radiation reaction of a classical quasi-rigid extended charge. J. Phys. A: Math. Gen. 39, 38013816.CrossRefGoogle Scholar
Meyer-ter-Vehn, J. & Wu, H.-C. (2009). Coherent Thomson backscattering from laser-driven relativistic ultra-thin electron layers. Eur. Phys. J. D 55, 433441.CrossRefGoogle Scholar
Panofsky, W.K.H. & Phillips, M. (1962). Classical Electricity and Magnetism, 2nd ed. Reading, MA: Addison-Wesley.Google Scholar
Parks, P.B., Cowan, T.E., Stephens, R.B. & Campbell, E.M. (2001). Model of neutron-production rates from femtosecond-laser-cluster interactions. Phys. Rev. A 63, 063203.CrossRefGoogle Scholar
Qiao, B., Zepf, M., Borghesi, M., Dromey, B. & Geissler, M. (2009). Coherent x-ray production via pulse reflection from laser-driven dense electron sheets. New J. Phys. 11, 103042.CrossRefGoogle Scholar
Quesnel, B. & Mora, P. (1998). Theory and simulation of the interaction of ultraintense laser pulses with electron in vacuum. Phys. Rev. E 58, 37193732.CrossRefGoogle Scholar
Rohrlich, F. (2001). The correct equation of motion of a classical point charge. Phys. Lett. A 283, 276278.CrossRefGoogle Scholar
Rohrlich, F. (2002). Dynamics of a classical quasi-point charge. Phys. Lett. A 303, 307310.CrossRefGoogle Scholar
Rohrlich, F. (2007). Classical Charged Particles, 3rd ed. Singapore: World Scientific.CrossRefGoogle Scholar
Saalmann, U., Siedschlag, CH. & Rost, J.M. (2006). Mechanisms of cluster ionization in strong laser pulses. J. Phys. B 39, R39R77.CrossRefGoogle Scholar
Salamin, Y.I. & Faisal, F.H.M. (1996). Harmonic generation by superintense light scattering from relativistic electrons. Phys. Rev. A 54, 43834395.CrossRefGoogle ScholarPubMed
Schlenvoigt, H.-P., Haupt, K., Debus, A., Budde, F., Jäckel, O., Pfotenhauer, S., Schwoerer, H., Rohwer, E., Gallacher, J.G., Brunetti, E., Shanks, R.P., Wiggins, S.M. & Jaroszynski, D.A. (2008). A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nature Phys. 4, 130133.CrossRefGoogle Scholar
Shao, Y.L., Ditmire, T., Tisch, J.W.G., Springate, E., Marangos, J.P. & Hutchinson, M.H.R. (1996). Multi-keV electron generation in the interaction of intense laser pulses with Xe clusters. Phys. Rev. Lett. 77, 33433346.CrossRefGoogle ScholarPubMed
Springate, E., Aseyev, S.A., Zamith, S. & Vrakking, M.J.J. (2003). Electron kinetic energy measurements from laser irradiation of clusters. Phys. Rev. A 68, 053201.CrossRefGoogle Scholar
Stupakov, G.V. & Zolotorev, M.S. (2001). Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches. Phys. Rev. Lett. 86, 52745277.CrossRefGoogle ScholarPubMed
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Teitelboim, C. (1970). Splitting of the Maxwell tensor: radiation reaction without advanced fields. Phys. Rev. D 1, 15721582.CrossRefGoogle Scholar
Veksler, V.I. (1957). The principle of coherent acceleration of charged particles. Sov. Atom. Energy 2, 525528.CrossRefGoogle Scholar
Wang, H.F., Shi, L.P., Lukyanchuk, B., Sheppard, C. & Chong, C.T. (2008). Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nature Photonics 2, 501505.CrossRefGoogle Scholar
Wu, H.-C. & Meyer-ter-Vehn, J. (2009). The reflectivity of relativistic ultra-thin electron layers. Eur. Phys. J. D 55, 443449.CrossRefGoogle Scholar
Yaghjian, A.D. (2006). Relativistic Dynamics of a Charged Sphere. New York: Springer.CrossRefGoogle Scholar