Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T22:45:35.284Z Has data issue: false hasContentIssue false

Atomic processes in ionic projectiles in plasma: End-of-the-range effects

Published online by Cambridge University Press:  09 March 2009

E. Nardi
Affiliation:
Weizmann Institute of Science, Rehovot, Israel
Z. Zinamon
Affiliation:
Weizmann Institute of Science, Rehovot, Israel

Abstract

The charge state and the level populations of ionic projectiles that are stopped in hydrogen plasma are calculated in the average ion model. It is shown that in available experimental systems the parameters can be chosen such that the end of the range will occur inside the plasma column. The predicted narrow region over which recombination occurs can be used as a check on plasma stopping-power theory and as a direct measurement of the range, using spectroscopic diagnostics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnecke, G. et al. 1988 Proceedings of the 7th International Conference on High Power Beams, Kernforschungszentrum Karlsruhe, Bauer, W. and Schmidt, W., eds. p. 820.Google Scholar
Betz, H. D. 1972 Rev. Mod. Phys. 44, 465.CrossRefGoogle Scholar
Betz, H. D. & Grodzins, L. 1970 Phys. Rev. Lett. 25, 211.CrossRefGoogle Scholar
Bohr, N. & Lindhard, J. 1954 K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 18, No. 8.Google Scholar
Brandt, W. & Lapicki, G. 1974 Phys. Rev. A 10, 474.CrossRefGoogle Scholar
Burgess, A. 1965 Astrophys. J. 141, 1588.CrossRefGoogle Scholar
Gardes, D. et al. 1988. J. Phys. (Paris) 47, C7–151.Google Scholar
Griffin, M. S. et al. 1986 Phys. Rev. A 33, 3124.CrossRefGoogle Scholar
Lotz, W. 1968 Z. Phys. 206, 203.Google Scholar
McGuire, J. H. & Richard, P. 1973 Phys. Rev. A 3, 1374.CrossRefGoogle Scholar
Merts, A. L. et al. 1976 LANL Report No. LA-6220.Google Scholar
More, R. M. 1982 J. Quant. Spectrosc. Radiat. Transfer 27, 345.CrossRefGoogle Scholar
Mosher, D. 1976 LBL Report No. 5543, p. 39.Google Scholar
Nardi, E., Peleg, E. & Zinamon, Z. 1978 Phys. Fluids 21, 574.CrossRefGoogle Scholar
Nardi, E. & Zinamon, Z. 1982 Phys. Rev. Lett. 29, 1251.CrossRefGoogle Scholar
Olsen, J. N. et al. 1985 J. Appl. Phys. 58, 2958.CrossRefGoogle Scholar
Post, D. E. et al. 1977 At. Data Nucl. Data Tables 20, 434.CrossRefGoogle Scholar
Richard, P. 1975 Atomic Inner Shell Processes, Crasemann, B., ed. (Academic, New York) Vol. I, p. 73.CrossRefGoogle Scholar
Van Regemorter, H. 1962 Astrophys. J.136, 906.CrossRefGoogle Scholar
Vriens, L. & Smeets, A. H. M. 1980 Phys. Rev. A 22, 940.CrossRefGoogle Scholar
Weiss, W. L. et al. 1966 NBS Report No. NBS-4.Google Scholar
Weyrich, K. et al. 1989 Nucl. Instrum, Methods Phys. Res. A 278, 52.CrossRefGoogle Scholar
Young, F. C. et al. 1982 Phys. Rev. Lett. 49, 549.CrossRefGoogle Scholar
Zeldovich, Ya. B. & Raizer, Ya. P. 1966 Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York).Google Scholar