Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T14:25:46.305Z Has data issue: false hasContentIssue false

Analysis of atomic models for the extinction coefficient calculation

Published online by Cambridge University Press:  09 March 2009

E. Mínguez
Affiliation:
Instituto de Fusión Nuclear (DENIM), José Gutiérrez Abascal, 2; 28006 Madrid, Spain
J. F. Serrano
Affiliation:
Instituto de Fusión Nuclear (DENIM), José Gutiérrez Abascal, 2; 28006 Madrid, Spain
M. L. Gámez
Affiliation:
Instituto de Fusión Nuclear (DENIM), José Gutiérrez Abascal, 2; 28006 Madrid, Spain

Abstract

The quantitative analysis of the collisional line broadening and the ionization state distributions for determining optical properties of aluminum plasmas are the main goal of this paper. In a preliminary analysis, results from an average atom model are compared with those from detailed configurations, assuming LTE conditions. The sensitivity to these physical aspects in the extinction coefficient and in the Rosseland and Planck mean opacities are carefully studied.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argo, M. F. & Huebner, W. F. 11976 J.Q.S.R.T., 16, 1091.Google Scholar
Carson, T. R., Mayers, D. F. & Stibbs, D. W. N. 1968 Mon. Not. R. Astr.-Soc., 140, 483.Google Scholar
Cooper, N. G. ed. 1983 Los Alamos National Laboratory. Report No. LALP-83–4.Google Scholar
Cox, A. 1965 In Stars and Stellar Structure. Vol. III, ed by Aller, L. and McLaughlin, D., University of Chicago Press.Google Scholar
Duston, D. 1985 In Radiative Properties of Hot Dense Matter, ed. by Davis, J., Hooper, C., Lee, R., Merts, A. & Rozsnyai, B.. World Scientific.Google Scholar
Gamez, M. L., Minguez, E. & Serrano, J. F. 1986 Denim 121. Annual Research Report.Google Scholar
Grant, I. P. 1970 Adv. Phys., 19, 747.Google Scholar
Huebner, W. F. 1964 J.Q.S.R.T., 4, 753.Google Scholar
Huebner, W. F., Merts, A. L., Magee, N. H. & Argo, M. F. 1977 Los Alamos National Laboratory. Report No LA-6760-M.Google Scholar
Liberman, D. A. 1979 Phys. Rev. B, 20, 4981.Google Scholar
Liberman, D. A., Cromer, D. T. & Waber, J. T. 1971 Comp. Phys. Comm., 2, 107.Google Scholar
Lokke, N. A. & Grasberger, W. H. 1977 Lawrence Livermore National Laboratory. Report No. UCRL-52276. Preprint.Google Scholar
Mayer, H. 1947 Los Alamos Scientific Laboratory. Report LA–647.Google Scholar
More, R. M. 1981 Lawrence Livermore National Laboratory. Report No. UCRL–84991 Part I & II. Preprint.Google Scholar
More, R. M. 1986 Lawrence Livermore National Laboratory. Report No. UCRL–94360 Preprint.Google Scholar
Rose, S. J. 1985 In Radiative Properties of Hot Dense Matter, ed. by Davis, J., Hooper, C., Lee, R., Merts, A. & Rozsnyai, B.. World Scientific.Google Scholar
Rozsnyai, B. F. 1972 Phys. Rev. A, 5, 1137.Google Scholar
Rozsnyai, B. F. 1982 J.Q.S.R.T., 27, 211.Google Scholar
Salzmann, , Yin, R. Y., & Pratt, R. H. 1984 Report PITT-321.Google Scholar
Serrano, J. F. & Minguez, E. 1984 Denim-025. Annual Research Report.Google Scholar
Serrano, J. F. & Minguez, E. 1985 Denim-077. Annual Research Report.Google Scholar
Stewart, J. & Pyatt, K. 1966 Astrophys Journal, 144, 1203.Google Scholar
Velarde, G. et al. , 1978 Atomkernenergie/Kerntechnik, 35, 40.Google Scholar
Velarde, G. et al. , 1984a European Space Agency Scientific & Technical Publications Branch, 207, 201.Google Scholar
Velarde, G. et al. , 1984b Atomkernenergie/Kerntechnik, 44, 3.Google Scholar
Velarde, G. et al. , 1986 Laser & Particle Beams, 4, 349.Google Scholar