Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T02:35:46.923Z Has data issue: false hasContentIssue false

Advanced techniques of high-efficiency pulse compression for KrF lasers

Published online by Cambridge University Press:  09 March 2009

Ken-Ichi Ueda
Affiliation:
Institute for Laser Science, University of Electro-Communications, Chofu, Tokyo 182, Japan
Hajime Nishioka
Affiliation:
Institute for Laser Science, University of Electro-Communications, Chofu, Tokyo 182, Japan
Kazuhiko Kimura
Affiliation:
Institute for Laser Science, University of Electro-Communications, Chofu, Tokyo 182, Japan
Hiroshi Takuma
Affiliation:
Institute for Laser Science, University of Electro-Communications, Chofu, Tokyo 182, Japan

Abstract

A couple of advanced techniques of high-efficiency pulse compression for KrF lasers have been developed in our laboratory. As is well known, electron beam-excited KrF lasers have a capability of large output energy of 100- to 1,000-ns pulse duration. However, high-efficiency operation under a short-pulse input is difficult to achieve because of the reaction kinetics and short lifetime of KrF excimers. For developing ultrahigh peak-power lasers, the efficient pulse compression of ns to ps and ps to fs pulses is essential. We demonstrated advanced techniques, Raman pulse compression in a transient Raman regime, and pulse compression in saturated amplifiers with saturable absorbers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A. et al. 1968 IEEE J. Quant. Electron. QE-4, 598.CrossRefGoogle Scholar
Carman, R.L. et al. 1970 Phys. Rev. A 2, 60.CrossRefGoogle Scholar
Everall, N.J. et al. 1987 Opt. Commun. 64, 393.CrossRefGoogle Scholar
Goldhar, J. & Murray, J.R. 1982 IEEE J. Quant. Electron. QE-18, 399.CrossRefGoogle Scholar
Goldhar, J. et al. 1984 IEEE J. Quant. Electron. QE-20, 772.CrossRefGoogle Scholar
Murray, J.R. et al. 1978 Appl. Phys. Lett. 33, 399.CrossRefGoogle Scholar
Murray, J.R. et al. 1979 IEEE J. Quant. Electron. QE-15, 345.Google Scholar
Nishioka, H. et al. 1989a Rev. Laser Eng. 17, 652.CrossRefGoogle Scholar
Nishioka, H. et al. 1989b Opt. Lett. 14, 692.CrossRefGoogle Scholar
Nishioka, H. et al. 1989c Proceedings of Lasers '89, pp. 110115.Google Scholar
Nishioka, H. et al. 1991a Rev. Laser Eng. 19, 122.CrossRefGoogle Scholar
Nishioka, H. et al. 1991b Technical Digest of CLEO'91 (Baltimore, MD), Chap. 5, p. 346.Google Scholar
Sasaki, A. et al. 1989 J. Appl. Phys. 65, 231.CrossRefGoogle Scholar
Taira, Y. et al. 1982 Chem. Phys. Lett. 91, 299.CrossRefGoogle Scholar
Trutna, W.R. et al. 1979 IEEE J. Quant. Electron. QE-15, 648.CrossRefGoogle Scholar
Ueda, K. & Takuma, H. 1987 Short Wavelength Lasers (Springer-Verlag, New York), pp. 178187.Google Scholar
Ueda, K. et al. 1987 Rev. Laser Eng. 15, 22.CrossRefGoogle Scholar
Ueda, K. 1988 Rev. Laser Eng. 16, 209.CrossRefGoogle Scholar
Ueda, K. 1989 Laser Particle Beams 7, 375.CrossRefGoogle Scholar
Ueda, K. et al. 1992 Proceedings Lasers'91 (to be published).Google Scholar