Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T17:33:34.215Z Has data issue: false hasContentIssue false

Acceleration of high-quality, well-collimated return beam of relativistic electrons by intense laser pulse in a low-density plasma

Published online by Cambridge University Press:  01 July 2004

LI BAIWEN
Affiliation:
The Graduate University for Advanced Studies and National Institute for Fusion Science, Oroshi, Toki, Japan Institute of Applied Physics and Computational Mathematics, Beijing, P. R. China
S. ISHIGURO
Affiliation:
The Graduate University for Advanced Studies and National Institute for Fusion Science, Oroshi, Toki, Japan
M.M. šKORIĆ
Affiliation:
Vinča Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro
H. TAKAMARU
Affiliation:
Chubu University, Kasugai, Aichi, Japan
T. SATO
Affiliation:
Earth Simulator Center, JAMSTEC, Yokohama-shi, Japan

Abstract

The mechanism of electron acceleration by intense laser pulse interacting with an underdense plasma layer is examined by one-dimensional particle-in-cell (1D-PIC) simulations. The standard dephasing limit and the electron acceleration process are discussed briefly. A new phenomenon, of short high-quality, well-collimated return relativistic electron beam with thermal energy spread, is observed in the direction opposite to laser propagation. The process of the electron beam formation, its characteristics, and the time-history in x and px space for test electrons in the beam, are analyzed and exposed clearly. Finally, an estimate for the maximum electron energy appears in a good agreement with simulation results.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonsen, T.M., Jr. & Mora, P. (1992). Self-focusing and Raman scattering of laser pulses in tenuous plasmas. Phys. Rev. Lett. 69, 22042207.Google Scholar
Clayton, C.E., Marsh, K.A., Dyson, A., Everett, M., Lal, A. Leemans, W.P., Williams, R., &Joshi, C. (1993). Ultrahighgradient acceleration of injected electrons by laser-excited relativistic electron plasma waves, Phys. Rev. Lett. 70, 3740.Google Scholar
Chen, P., Dawson, J.M., Huff, R.W. Huff, & Katsouleas, T. (1985). Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma. Phys. Rev. Lett. 54, 693696.Google Scholar
Esarey, E., Hafizi, B., Hubbard, R. & Ting, A. (1998). Trapping and Acceleration in Self-Modulated Laser Wakefields. Phys. Rev. Lett. 80, 55525555.Google Scholar
Esarey, E., Krall, J. & Sprangle, P. (1994). Envelope analysis of intense laser pulse self-modulation in plasmas. Phys. Rev. Lett. 72, 28872890.Google Scholar
Esarey, E., Sprangle, P., Krall, J, Ting, A. & Joyce, G. (1993). Optically guided laser wake-field acceleration. Phys. Fluids B 26902697.
Gordon, D., Tzeng, K.C., Clayton, C.E., Dangor, A.E., Malka, V., Marsh, K.A., Modena, A., Mori, W.B., Muggli, P., Najmudin, Z., Neely, D., Danson, C. & Joshi, C. (1998). Observation of Electron Energies Beyond the Linear Dephasing Limit from a Laser-Excited Relativistic Plasma Wave. Phys. Rev. Lett. 80, 21332136.Google Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snaveley, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Physics of Plasmas, 7, 20762082.Google Scholar
Mackinnon, A.J., Sentoku, Y., Patel, P.K., Price, D.W., Hatchett, S., Key, M.H., Anderson, C., Snavely, R. & Freeman, R.R. (2002). Enhancement of Proton Acceleration by Hot-Electron Recirculation in Thin Foils Irradiated by Ultraintense Laser Pulses. Phys. Rev. Lett. 88, 215006-1215006-4.Google Scholar
Malka, G., Lefebvre, E. & Miquel, J.L. (1997). Experimental Observation of Electrons Accelerated in Vacuum to Relativistic Energies by a High-Intensity Laser. Phys. Rev. Lett. 78, 33143317.Google Scholar
Mendonca, J.T. (1983). Threshold for electron heating by two electromagnetic waves. Phys. Rev. A 28, 35923598.Google Scholar
Mendonca, J.T. & Doveil, F. (1982). Stochasticity in plasma with electromagnetic waves. J. Plasma physics 28, 485493.Google Scholar
Miller, J.D., Schneider, R.F., Weidman, D.J., Uhm, H.S. & Nguyen, K.T. (1991). Observation of plasma wake-field effects during high-current relativistic electron-beam transport. Phys. Rev. Lett. 67, 17471750.Google Scholar
Mima, K., Jovanovic, M.S., Sentoku, Y., Sheng, Z.-M., Skoric, M.M. & Sato, T. (2001). Stimulated photon cascade and condensate in a relativistic laser-plasma interaction. Physics of Plasmas, 8, 23492356.Google Scholar
Mori, W.B. (1997). The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers. IEEE Journal. Quantum Electronics 33, 19421953.Google Scholar
Mori, W.B., Decker, C.D., Hinkel, D.E. & Katsouleas, T. (1994). Raman forward scattering of short-pulse high-intensity lasers. Phys. Rev. Lett. 72, 14821485.Google Scholar
Rousseaux, C., Rabec le Gloahec, M., Baton, S.D., Amiranoff, F., Fuchs, J., Adam, J.C., Heron, A. & Mora, P. (2002). Strong absorption, intense forward-Raman scattering and relativistic electrons driven by a short, high intensity laser pulse through moderately underdense plasmas. Physics of Plasmas 7, 42614269.Google Scholar
Santos, J.J. et al., ibid., (2002). 88, 215006.
Sentoku, Y., Mima, K., Sheng, Z.M., Kaw, P., Nishihara, K. & Nishikawa, K. (2002). Three-dimensional particle-in-cell simulations of energetic electron generation and transport with relativistic laser pulses in overdense plasmas. Phys. Rev. E 65, 046408-1046408-7.Google Scholar
Sheng, Z-M., Mima, K., Sentoku, Y., Jovanovic, M.S., Zhang, T.J. & Meyer-ter-Vehn, J. (2002). Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma. Phys. Rev. Lett. 88, 055004-1055004-4.Google Scholar
Shkolnikov, P.L., Kaplan, A.E., Pukhov, A. & Meyer-ter-Vehn, J. (1997). Positron and gamma-photon production and nuclear reactions in cascade processes initiated by a sub-terawatt femtosecond laser. Applied Physics Letters 71, 34713473.Google Scholar
Shvets, G., Fisch, N.J., Pukhov, A. & Meyer-ter-Vehn, J. (1998). Superradiant Amplification of an Ultrashort Laser Pulse in a Plasma by a Counterpropagating Pump. Phys. Rev. Lett. 81, 48794882.Google Scholar
Sprangle, P., Esarey, E. Krall, J., &Joyce, G. (1992). Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69, 22002203.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Physics of Plasmas 1, 16261634.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser Electron Accelerator. Phys. Rev. Lett. 43, 267270.Google Scholar
Tzeng, K.-C., Mori, W.B. & Katsouleas, T. (1997). Electron Beam Characteristics from Laser-Driven Wave Breaking. Phys. Rev. Lett. 79, 52585261.Google Scholar
Umstadter, D., Chen, S.-Y., Maksimchuk, A., Mourou, G. & Wagner, R. (1996). Nonlinear Optics in Relativistic Plasmas and Laser Wake Field Acceleration of Electrons. Science 273, 472475.Google Scholar
Wagner, R., Chen, S.-Y., Maksimchuk, A., & Umstadter, D. (1997). Electron Acceleration by a Laser Wakefield in a Relativistically Self-Guided Channel. Phys. Rev. Lett. 78, 31253128.Google Scholar
Wilks, S.C., Dawson, J.M., & Mori, W.B. (1988). Frequency Up-Conversion of Electromagnetic Radiation with Use of an Overdense Plasma. Phys. Rev. Lett. 61, 337340.Google Scholar
Wilks, S.C., Dawswon, J.M., Mori, W.B., Katsouleas, T. & Jones, M.E. (1989). Photon accelerator. Phys. Rev. Lett. 62, 26002603.Google Scholar