Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T02:45:55.051Z Has data issue: false hasContentIssue false

Absorption of ultra-short laser pulses and particle transport in dense targets

Published online by Cambridge University Press:  08 June 2006

M. SHERLOCK
Affiliation:
Blackett Laboratory, Imperial College London, Prince Consort Rd, London, UK
A. R. BELL
Affiliation:
Blackett Laboratory, Imperial College London, Prince Consort Rd, London, UK
W. ROZMUS
Affiliation:
University of Alberta, Edmonton, Canada

Abstract

A new version of the numerical code KALOS has been developed to solve the Vlasov-Fokker-Planck equation for electrons as well as EM wave propagation. KALOS represents the electron distribution function in momentum space by an expansion in spherical harmonics. Its unique features make possible simultaneous investigations of fast electron generation and transport and the collisional evolution of thermal particles, including the return current of cold electrons. We report here on results obtained in one spatial dimension. Absorption of 100fs, 1015 W/cm2 laser pulses has been studied at normal incidence in sharp-edged dense plasmas. We have studied the effect on absorption of energy transport into the target as well as the deviation of the electron distribution function from Maxwellian. It is shown that it is necessary to take into account collisional heat transport into the target in order to correctly model the absorption rate at the front surface.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bell, A.R. & Kingham, R.J. (2003). Resistive collimation of electron beams in laser-produced plasmas. Phys. Rev. Lett. 91, 035003-1.Google Scholar
Bibi, F.A., Matte, J.P. & Kieffer, J.C. (2004). Fokker-Planck simulations of hot electron transport in solid density plasma. Laser Part. Beams 22, 97102.Google Scholar
Bochkarev, S.G., Bychenkov, V. Yu. & Rozmus, W. (2004). Nonequilibrium electron distribution functions and nonlinear thermal transport. Phys. Plasmas 11, 39974007.Google Scholar
Brunner, D. & Valeo, E. (2002). Simulations of electron transport in laser hot spots. Phys. Plasmas 9, 923936.Google Scholar
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, I., Fell, B., Frackiewicz, A.J., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2005). Vulcan petawatt: Design, operation and interactions at 5 × 10(20) Wcm(-2). Laser Part. Beams 23, 8793.Google Scholar
Eidmann, K., Meyer-ter-Vehn, J., Schlegel, T. & Hüller, S. (2000). Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter. Phys. Rev. E 62, 12021214.Google Scholar
Gibbon, P., Andreev, A., Lefevbre, E., Bonnaud, G., Ruhl, H., Delettrez, J. & Bell, A.R. (1999). Calibration of one-dimensional boosted kinetic codes for modeling high-intensity laser–solid interactions. Phys. Plasmas 6, 947953.Google Scholar
Honrubia, J.J., Antonicci, A. & Moreno, D. (2004). Hybrid simulations of fast electron transport in conducting media. Laser Part. Beams 22, 129135.Google Scholar
Isakov, V.A., Kanavin, A.P. & Uryupin, S.A. (2005). Reflection and absorption of a high-power ultrashort laser pulse heating a solid-state target. Laser Part. Beams 23, 315319.Google Scholar
Langdon, A.B. (1980). Nonlinear inverse bremsstrahlung and heated-electron distributions. Phys. Rev. Lett. 44, 575579.Google Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399405.Google Scholar
Matte, J.P., Lamoureux, M., Moller, C., Yin, R.Y., Delettrez, J., Virmont, J. & Johnston, T.W. (1988). Non-Maxwellian electron distributions and continuum X-ray emission in inverse Bremsstrahlung heated plasmas. Plasma Phys. Contr. Fusion 30, 16651689.Google Scholar
Price, D.F., More, R.M., Walling, R.S., Guethlein, G., Shepherd, R.L., Stewart, R.E. & White, W.E. (1995). Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1–1000 eV. Phys. Rev. Lett. 75, 252255.Google Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, TE., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.Google Scholar
Rozmus, W., Tikhonchuk, V.T. & Cauble, R. (1996). A model of ultrashort laser pulse absorption in solid targets. Phys. Plasmas 3, 360367.Google Scholar
Sakagami, H. & Mima, K. (2004). Interconnection between hydro and PIC codes for fast ignition simulations. Laser Part. Beams 22, 4144.Google Scholar