Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T23:35:04.777Z Has data issue: false hasContentIssue false

Absolute equation of state measurement of aluminum using laser quasi-isentropic-driven flyer plate

Published online by Cambridge University Press:  01 February 2017

H. Shu*
Affiliation:
Shanghai Institute of Laser Plasma, Shanghai 201800, China
X. Huang
Affiliation:
Shanghai Institute of Laser Plasma, Shanghai 201800, China
J. Ye
Affiliation:
Shanghai Institute of Laser Plasma, Shanghai 201800, China
G. Jia
Affiliation:
Shanghai Institute of Laser Plasma, Shanghai 201800, China
J. Wu
Affiliation:
Shanghai Institute of Laser Plasma, Shanghai 201800, China
S. Fu
Affiliation:
Shanghai Institute of Laser Plasma, Shanghai 201800, China
*
Address correspondence and reprint requests to: Hua Shu, Shanghai Institute of LaserPlasma, Shanghai 201800, China. E-mail: [email protected]

Abstract

In this paper, we perform an absolute equation of state (EOS) measurement on the principal Hugoniot of aluminum using a near-symmetric impact method. The flyer plates are accelerated to high velocities using the laser-ramp-driven method. An aluminum flyer plate of ~25 µm is accelerated to the velocity range from 4 to 12 km/s. Then the aluminum flyer plate propagates across a vacuum gap and impacts with an aluminum step target. A line-imaging optical recording velocity interferometer for any reflector (ORVIS) is used to measure the aluminum flyer plate and the shock velocity simultaneously. Aluminum EOS data were measured with pressures range from 50 to 200 GPa. This absolute EOS measurement method may be used for studying a variety of materials.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batani, D. (2016). Matter in extreme conditions produced by lasers. Europhys. Lett. 114, 65001.Google Scholar
Batani, D., Strati, F., Stabile, H., Tomasini, M., Lucchini, G., Ravasio, A., Koenig, M., Benuzzi-Mounaix, A., Nishimura, H., Ochi, Y., Ullschmied, J., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Prag, A., Hall, T., Milani, P., Barborini, E. & Piseri, P. (2004). Hugoniot data for carbon at megabar pressures. Phys. Rev. Lett. 92, 065503.Google Scholar
Benuzzi, A., Löwer, T., Koenig, M., Faral, B., Barani, D., Beretta, D., Danson, C. & Pepler, D. (1996). Indirect and direct laser driven shock waves and applications to copper equation of state measurements in the 10–40 Mbar pressure range. Phys. Rev. E 54, 2162.CrossRefGoogle Scholar
Benuzzi-Mounaix, A., Koenig, M., Huser, G., Faral, B., Batani, D., Henry, E., Tomasini, M., Marchet, B., Hall, T.A. & Boustie, M. (2002). Absolute equation of state measurements of iron using laser driven shocks. Phys. Plasmas 9, 2466.Google Scholar
Cauble, R., Perry, T.S., Bach, D.R., Budil, K.S., Hammel, B.A., Collins, G.W., Gold, D.M., Dunn, J., Celliers, P., Da Silva, L.B., Foord, M.E., Wallace, R.J., Stewart, R.E. & Woolsey, N.C. (1998). Absolute equation-of-state data in the 10–40 Mbar (1–4 TPa) regime. Phys. Rev. Lett. 80, 1248.CrossRefGoogle Scholar
Celliers, P.M., Bradley, D.K., Collins, G.W., Hicks, D.G., Boehly, T.R. & Armstrong, W.J. (2004). Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility. Rev. Sci. Instrum. 75, 4916.Google Scholar
Celliers, P.M., Collins, G.W., DaSilva, L.B., gold, D.M. & Cauble, R. (1998). Accurate measurement of laser-driven shock trajectories with velocity interferometry. Appl. Phys. Lett. 73, 1320.CrossRefGoogle Scholar
Deng, X.M., Liang, X.C. & Chen, Z. (1986). Uniform illumination of laser targets using a lens array. Appl. Opt. 25, 377.CrossRefGoogle ScholarPubMed
Fratanduono, D.E., Smith, R.F., Boehly, T.R., Eggert, J.H., Braun, D.G. & Collins, G.W. (2012). Plasma-accelerated flyer-plates for equation of state studies. Rev. Sci. Instrum. 83, 073504.Google Scholar
Fu, S.Z., Gu, Y., Wu, J. & Wang, S.J. (1995). Laser-driven shock stability in Al and shock compressibilities of Fe up to 0.8 TPa and SiO2 up to 0.4 Tpa. Phys. Plasmas 9, 3201.Google Scholar
Fu, S.Z., Huang, X.G., Ma, M.X. & Shu, H. (2007). Analysis of measurement error in the experiment of laser equation of state with impedance-match way and the Hugoniot data of Cu up to similar to 2.24 TPa with high precision. J. Appl. Phys. 101, 043517.Google Scholar
Godwal, B.K., Rao, R.S., Verma, A.K., Shukla, M., Pant, H.C. & Sikka, S.K. (2003). Equation of state of condensed matter in laser-induced high-pressure regime. Laser Part. Beams 21, 523.Google Scholar
Gu, Y., Fu, S., Wu, J., Yu, S., Ni, Y. & Wang, S. (1996). Equation of state studies at SILP by laser-driven shock waves. Laser Part. Beams 14, 157.CrossRefGoogle Scholar
Hann, S.W., Pollaine, S.M., Lindl, J.D., Suter, L.J., Berger, R.L., Powers, L.V., Alley, W.E., Amend, P.A., Futterman, J.A., Levedahl, W.K., Rosen, M.D., Rowley, D.P., Sacks, R.A., Shestakov, A.I., Strobel, G.L., Tabak, M., Weber, S.V., Zimmerman, G.B., Krauser, W.J., Wilson, D.C., Coggeshall, S.V., Harris, D.B., Hoffman, N.M. & Wilde, B.H. (1995). Design and modeling of ignition targets for the national ignition facility. Phys. Plasmas 2, 2480.Google Scholar
Knudson, M.D., Lemke, R.W., Hayes, D.B., Hall, C.A., Deeney, C. & Asay, J.R. (2003). Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique. J. Appl. Phys. 94, 44204431.Google Scholar
Koenig, M., Benuzzi, A., Faral, B., Krishnan, J., Boudenne, J.M., Jalinaud, T., Remond, C., Decoster, A., Batani, D., Beretta, D. & Hall, T.A. (1998). Brominated plastic equation of state measurements using laser driven shocks. Appl. Phys. Lett. 72, 1033.CrossRefGoogle Scholar
Lindl, J.D. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.CrossRefGoogle Scholar
Marsh, S.P. (Ed.). (1980). LASL Shock Hugoniot Data. Berkeley: University of California Press.Google Scholar
McQueen, R.G., Marsh, S.P., Taylor, J.W., Fritz, J.N. & Carter, W.J. (1970). The equation of state of solids from shock wave studies. In High Velocity Impact Phenomena, (Kinslow, R., Ed.), pp. 293417. New-York: Academic Press; appendices on pp. 515–568.Google Scholar
Mitchell, C. & Nellis, W.J. (1981). Shock compression of aluminum, copper and tantalum. J. Appl. Phys. 52, 3363.Google Scholar
Mithcell, A.C., Nellis, W.J., Moriarty, J.A., Heinle, R.A., Holmes, N.C., Tipton, R.E. & Repp, G.W. (1991). Equation of state of Al, Cu, Mo, and Pb at shock pressures up to 2.4 TPa. J. Appl. Phys. 69, 2981.Google Scholar
Nellis, W.J., Mitchell, A.C. & Young, D.A. (2003). Equation-of-state measurements for aluminum, copper, and tantalum in the pressure range 80–440 GPa (0.8–4.4 Mbar). J. Appl. Phys. 93, 304.Google Scholar
Ozaki, N., Sasatani, Y., Kishida, K., Nakano, M., Miyanaga, M., Nagai, K., Nishihara, K., Norimatsu, T., Tanaka, K.A., Fujimoto, Y., Wakabayashi, K., Hattori, S., Tange, T., Kondo, K., Yoshida, M., Kozu, N., Ishiguchi, M. & Takenaka, H. (2001). Planar shock wave generated by uniform irradiation from two overlapped partially coherent laser beams. J. Appl. Phys. 89, 2571.Google Scholar
Ragan, C.E. III (1982). Shock compression measurements at 1 TPa to 7 TPa. Phys. Rev. A 25, 3360.Google Scholar
Shu, H., Fu, S.Z., Huang, X.G., Wu, J., Zhou, H.Z. & Ye, J.J. (2012). A modified illumination system for a line-imaging optically recording velocity interferometer and its application in equation of state measurement. Meas. Sci. Technol. 23, 015203.Google Scholar
Silva, L.D., Celliers, P., Collins, G.W., Budil, K.S., Holmes, N.C., Barbee, T.W., Hammel, B.A., Kilkenny, J.D., Wallace, R.J., Ross, M., Cauble, R., Ng, A. & Chiu, G. (1997). Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar). Phys. Rev. Lett. 78, 483.Google Scholar
Smith, R.F., Eggert, J.H., Saculla, M.D., Jankowski, A.F., Bastea, M., Hicks, D.G. & Collins, G.W. (2008). Ultrafast dynamic compression technique to study the kinetics of phase transformations in bismuth. Phys. Rev. Lett. 101, 065701.CrossRefGoogle Scholar
Swift, D.C., Niemczura, J.G., Paisley, D.L., Johnson, R.P., Luo, S.-N. & Tierney, T.E. IV (2005). Laser-launched flyer plates for shock physics experiments. Rev. Sci. Instrum. 76, 093907.CrossRefGoogle Scholar
Takamatsu, K., Ozaki, N., Tanaka, K.A., Ono, T., Nagai, K., Nakai, M., Watari, T., Sunahara, A., Nakano, M., Kataoka, T., Takenaka, H., Yoshida, M., Kondo, K. & Yamanaka, T. (2003). Equation-of-state measurements of polyimide at pressures up to 5.8 TPa using low-density foam with laser-driven shock waves. Phys. Rev. E 67, 056406.Google Scholar
Tanaka, K.A., Hara, M., Ozaki, N., Sasatani, Y., Anisimov, S.I., Kondo, K.-I., Nakano, M., Nishihara, K., Takenaka, H., Yoshida, M. & Mima, K. (2000). Multi-layered flyer accelerated by laser induced shock waves. Phys. Plasmas 7, 676.Google Scholar
Vladimirov, A. (1984). Shock compressibility of aluminum at p greater-than-or-equal-to 1 Gbar. JETP Lett. 39, 82.Google Scholar