Published online by Cambridge University Press: 09 March 2009
We have developed medium and high resolution X-ray crystal spectrometers for measurements of charge state distributions of impurity ions, density of suprathermal electrons and ion temperature in magnetically confined plasmas. The techniques utilizing these spectrometers are, in principle, applicable to laser produced plasmas, especially in their expanding phase. The role of X-ray spectroscopy to produce useful data for atomic physics as well as for plasma diagnostics is emphasized. A beam-line has been designed and installed to the Ultraviolet Synchrotron Radiation Facility (UVSOR) at IMS, Okazaki, for the purpose of establishing calibration techniques for optical components, detectors and spectrometers in the range from ultraviolet to soft X ray for plasma diagnostics. Characteristics of the beam and its application to the study of interaction between synchrotron radiation and hot dense plasmas are described. Synchrotron radiation can replace the dye laser which has so far been used as a light source in the laser-induced fluorescence method to obtain population density of specified levels in a plasma.