Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T04:48:43.307Z Has data issue: false hasContentIssue false

Weak double layers in the auroral ionosphere

Published online by Cambridge University Press:  09 March 2009

M. K. Hudson
Affiliation:
Dartmouth College
T. L. Crystal
Affiliation:
Dartmouth College
W. Lotko
Affiliation:
Dartmouth College
C. Barnes
Affiliation:
Los Alamos National Laboratory

Abstract

Previous work on the evolution of weak double layers in a hydrogen plasma has been extended to include H+ and O+ with relative drift. It has been shown (Bergmann & Lotko 1986) that the relative drift between hydrogen and oxygen ions due to a quasistatic parallel electric field gives rise to a strong linear fluid instability which dominates the ion acoustic mode at the bottom of the auroral acceleration region. This ion–ion instability can modify ion distributions at lower altitudes and the subsequent nonlinear evolution of weak double layers at higher altitudes in the ion acoustic regime. We have found that ion hole formation can occur for smaller relative electron-ion drifts than seen in previous simulations, due to the hydrogen-oxygen two-stream instability. This results in local modification of the ion distributions in phase space, and a partial filling of the valley between the hydrogen and oxygen peaks, which would be expected at higher altitudes on auroral field lines. It is shown that the observed velocity diffusion does not necessarily preclude ion hole and double layer formation in hydrogen in the ion acoustic regime. These simulation results are consistent with the experimentally measured persistence of separate hydrogen and oxygen peaks, and the observation of weak double layers above an altitude of 3000 km on auroral field lines.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, C., Hudson, M. K. & Lotko, W. 1985 Phys. Fluids, 28, 1055.CrossRefGoogle Scholar
Bergmann, R. A. 1984. J. Geophys. Res., 89, 9812.Google Scholar
Bergmann, R. A. & Lotko, W. 1986 J. Geophys. Res., 91, 7033.CrossRefGoogle Scholar
Birdsall, C. K. & Langdon, A. B. 1984 Plasma Physics via Computer Simulations (McGraw Hill, New York).Google Scholar
Chan, C., Cho, M. H., Hershkowitz, N. & Intrator, T. 1984 Phys. Rev. Lett., 52, 1782.CrossRefGoogle Scholar
Chan, C. 1986 Laser and Particle Beams, 5, 219.CrossRefGoogle Scholar
Chanteur, G. J., Adam, C.Pellat, R. & Volokhitin, A. S. 1983. Phys. Fluids, 26, 1584.CrossRefGoogle Scholar
Chen, F. F. 1974 Introduction to Plasma Physics (Plenum, New York).Google Scholar
Chiu, & Schulz, 1978 J. Geophys. Res., 83, 629.CrossRefGoogle Scholar
Collin, H. L., Sharp, R. D., Shelley, E. G. & Johnson, R. G., 1981 J. Geophys. Res., 86, 6820.CrossRefGoogle Scholar
Hudson, M. K., Lotko, W., Roth, I. & Witt, E. 1983 J. Geophys. Res., 88, 916.CrossRefGoogle Scholar
Kaufmann, R. L., Ludlow, G. R., Collin, H. L., Peterson, W. K. & Burch, J. L. 1986 J. Geophys. Res., 91, 10080.CrossRefGoogle Scholar
Kindel, J. & Kennel, C. F. 1971 J. Geophys. Res., 76, 3055.CrossRefGoogle Scholar
Lawson, W. S. 1984 PDW1 Users Manual, Memorandum No. UCB/ERL M84/37 (University of California, Berkeley).Google Scholar
Lotko, W. 1983 Phys. Fluids, 26, 1771.CrossRefGoogle Scholar
Lyons, L. R. 1980 J. Geophys. Res., 85, 17.CrossRefGoogle Scholar
Sato, T. & Okuda, 1980 Phys. Rev. Lett., 44, 740.CrossRefGoogle Scholar
Sato, T. & Okuda, , 1981 J. Geophys. Res., 86, 3357.CrossRefGoogle Scholar
Sekar, A. N. & Saxena, Y. C., 1985 Plasma Phys. and Cont. Fusion, 27, 181.CrossRefGoogle Scholar
Schamel, H. 1982 Symposium on Plasma Double Layers, Riso.Google Scholar
Temerin, M., Cerny, K., Lotko, W. & Mozer, F. S. 1982 Phys. Rev. Lett., 48, 1175.CrossRefGoogle Scholar