Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T05:46:46.684Z Has data issue: false hasContentIssue false

Warm-dense-matter studies using pulse-powered wire discharges in water

Published online by Cambridge University Press:  21 September 2006

TORU SASAKI
Affiliation:
Department of Energy Sciences, Tokyo Institute of Technology, Yokohama, Japan
YUURI YANO
Affiliation:
Department of Energy Sciences, Tokyo Institute of Technology, Yokohama, Japan
MITSUO NAKAJIMA
Affiliation:
Department of Energy Sciences, Tokyo Institute of Technology, Yokohama, Japan
TOHRU KAWAMURA
Affiliation:
Department of Energy Sciences, Tokyo Institute of Technology, Yokohama, Japan
KAZUHIKO HORIOKA
Affiliation:
Department of Energy Sciences, Tokyo Institute of Technology, Yokohama, Japan

Abstract

Dense plasmas are produced using exploding wire discharges in water. Evolutions of radius, electrical conductivity, temperature of plasma and a shock wave in water accompanied with the explosion, are measured. Conductivities of aluminum, copper, and tungsten are compared with theoretical ones. To evaluate the equation of state, trajectories of the shock wave and the plasma boundary are compared with numerical calculations. Results show that the hydrodynamic behaviors are sensitive to the models of equation of state. Controllability of warm dense state in density-temperature diagram is discussed from the voltage-current characteristics of the wire discharges.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brysk, H., Campbell, P.M. & Hammerling, P. (1975). Thermal conduction in laser fusion. Plasma Phys. 17, 473484.
Clerouin, J., Renaudin, P., Laudernet, Y., Noiret, P. & Desjerlais, M.P. (2005). Electrical conductivity and equation-of-state study of warm dense copper: Measurements and quantum molecular dynamics calculation. Phys. Rev. B 71, 064203-1-5.
Constantin, C., Dewald, E., Niemann, C., Hoffmann, D.H.H., Udrea, S., Varentsov, D., Jacoby, V., Funk, U.N., Neuner, U. & Tauschwitz, A. (2004). Cold compression of solid matter by intense heavy-ion-beam-generated pressure waves. Laser Part. Beams 22, 5963.
Davidson, R.C. (2003). Frontiers in High Energy Density Physics. Washington, DC: The National Academies Press.
DeSilva, A.W. & Katsouros, J.D. (1999). Measurement of the electrical conductivity of metals in the vicinity of the critical point. Internat. J. Thermophys. 20, 126777.
Desjerlais, M.P. (2001). Practical improvements to the lee-more conductivity near the metal-insulator transition. Contrib. Plasmas Phys. 41, 267270.
Dewald, E., Constantin, C., Udrea, S., Jacoby, J., Hoffmann, D.H.H., Niemann, C., Weiser, J., Tahir, N.A., Kozyreva, A., Shutov, A. & Tauschwitz, A. (2002). Studies of high energy density in matter driven by heavy ion beams in solid targets. Laser Part. Beams 20, 399403.
Grisham, L.R. (2004). Moderate energy ions for high energy density physics experiment. Phys. Plasmas 11, 57275729.
Hammer, D.A. & Sinars, D.B. (2001). Single-wire explosion experiments relevant to the initial stages of wire array z pinches. Laser Part. Beams 19, 377391.
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.
Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., Mintsev, V., Tahir, N.A., Varentsov, D. & Wieser, J. (2002). Unique capabilities of an intense heavy ion beams as a tool for equation-of-state studies. Phys. Plasmas 9, 36513654.
Horioka, K., Nakajima, M., Sasaki, T. & Mizoguchi, T. (2004). Semi-Empirical Modeling of Exploding Wire Plasma in Water for Study on Strongly Coupled Plasma. Proc. 15th Int. Conf. on High Power Particle Beams, St. Petersburg, Russia, 894–897. D.V. Efremov Institute.
Ichimaru, S., Iyetomi, H. & Tanaka, S. (1987). Statistical physics of dense plasmas: Thermodynamics, transport coefficients and dynamic correlation. Phys. Rep. 149, 91205.
Kim, D.-K. & Kim, I. (2003). Calculation of ionization balance and electrical conductivity in nonideal aluminum plasma. Phys. Rev. E 68, 056410-1-6.
Krisch, I. & Kunze, H.J. (1998). Measurements of electrical conductivity and the mean ionization state of nonideal aluminum plasmas. Phys. Rev. E 58, 65576564.
Kuhlbrodt, S., Holst, B. & Redmer, R. (2005). COMPTRA04: A program package to calculate composition and transport coefficients in dense plasmas. Contrib. Plasmas Phys. 45, 7388.
Lampe, M. (1968). Transport theory of a partially degenerate plasma. Phys. Rev. 174, 276280.
Lee, R.W., Baldis, H.A., Cauble, R.C., Landen, O.L., Wark, J.S., Ng, A., Rose, S.J., Lewis, C., Riley, D., Gauthier, J.C. & Audebert, P. (2002). Plasma-based studies with intense X-ray and particle beam sources. Laser Part. Beams 20, 527536.
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.
More, R.M. (1981). Atomic physics in inertial confinement fusion. Part I & Part II. Report No. UCRL-84991. Livermore, CA: Lawrence Livermore National Laboratory.
More, R.M., Warren, K.H., Young, D.A. & Zimmerman, G.B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.
Ng, A., Ao, T., Perrot, F., Dharma-Wardana, M.W.C. & Foord, M.E. (2005). Idealized slab plasma approach for the study of warm dense matter. Laser Part. Beams 23, 527537.
Renaudin, P., Blancard, C., Faussurier, G. & Noiret, P. (2002). Combined pressure and electrical-resistivity measurements of warm dense aluminum and titanium plasmas. Phys. Rev. Lett. 88, 215001-1-4.
Saleem, S., Haum, J. & Kunze, H.J. (2001). Electrical conductivity measurements of strongly coupled W plasmas. Phys. Rev. E 64, 056403-1-6.
Sasaki, T., Nakajima, M., Kawamura, T. & Horioka, K. (2005). Semiempirical approach to pulsed wire discharges in water as a method for warm dense matter studies. J. Plasmas Fus. Res. 81, 965966.
Spitzer, L., Jr. & Harm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977981.
Tahir, N.A., Udrea, S., Deutsch, C., Fortov, V.E., Grandjouan, G., Gryaznov, V., Hoffmann, D.H.H., Hulsmann, P., Kirk, M., Lomonosov, I.V., Piriz, A.R., Shutov, A., Spiller, P., Temporal, M. & Varentsov, D. (2004). Target heating in high-energy-density matter experiments at the proposed GSI FAIR facility: Non-linear bunch rotation in SIS 100 and optimization of spot size and pulse length. Laser Part. Beams 22, 485493.
Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137142.
Wagner, W. & Pruss, A. (2002). The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387535.
Xiao, F., Yabe, T., Nizam, G. & Ito, T. (1996). Constructing a multi-dimensional oscillation preventing scheme for the advection equation by a rational function. Comput. Phys. Comm. 94, 103118.
Yabe, T., Ogata, Y., Takizawa, K., Kawai, T., Segawa, A. & Sakurai, K. (2001). The next generation CIP as a conservative semi-Lagrangian solver for solid, liquid and gas. J. Comput. and App. Math. 149, 267277.
Yoneda, H., Morikami, H., Ueda, K. & More, R.M. (2003). Ultrashort-Pulse Laser Ellipsometric Pump-Probe Experiments on Gold Targets. Phys. Rev. Lett. 91, 075004-1-4.
Zel'dovich, Y.B. & Raizer, Y.P. (1966). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. New York: Academic Press.