Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T04:25:48.190Z Has data issue: false hasContentIssue false

Ultrashort laser subsurface micromachining of three–dimensional microfluidic structures inside photosensitive glass

Published online by Cambridge University Press:  17 July 2009

Z. Wang
Affiliation:
Singapore Institute of Manufacturing Technology (SIMTech), Singapore
H. Zheng
Affiliation:
Singapore Institute of Manufacturing Technology (SIMTech), Singapore
W. Zhou*
Affiliation:
Singapore Institute of Manufacturing Technology (SIMTech), Singapore Precision Engineering and Nanotechnology Centre, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
*
Address correspondence and reprint requests to: W. Zhou, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore. E-mail: [email protected]

Abstract

A laser direct writing technique was used successfully to carry out subsurface micromachining of three-dimensional microfluidic structures. It involves simple steps of femtosecond laser irradiation to project a latent image of channels or chambers of various dimensions into a photosensitive Foturan glass, thermal annealing to produce crystallites of lithium metasilicates in the laser-irradiated regions, and use of a diluted hydrofluoric acid solution to remove the crystallized structures through selective chemical etching. The etched surfaces may be smoothened significantly through a secondary thermal annealing process. A microfluidic reagent mixer and reactor consisting of four cubic chambers and multiple channels was produced inside a single piece of glass to demonstrate that the technique can be used for rapid device fabrication without recourse to the cumbersome and expensive processes of alignment, stacking, bonding or assembly of the individual microcomponents. The direct writing technique makes it easy to integrate micro–optical and microfluidic components into a single chip.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bagchi, S., Kiran, P.P., Bhuyan, M.K., Bose, S., Ayyub, P., Krishnamurth, Y.M. & Kumar, G.R. (2008). Hotter electrons from nano-structured surfaces. Laser Part. Beams 26, 259264.CrossRefGoogle Scholar
Becker, H. & Gärtner, C. (2008). Polymer microfabrication technologies for microfluidic system. Anal. Bioanal. Chem. 380, 89111.CrossRefGoogle Scholar
Becker, H., Arundell, M., Harnisch, A. & Hülsenberg, D. (2002). Chemical analysis in photostructurable glass chips. Sens. Actuators. B 86, 271279.CrossRefGoogle Scholar
Bellouard, Y., Said, A., Dugan, M. & Bado, P. (2004). Fabrication of high-aspect ratio, microfluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express 12, 21202129.CrossRefGoogle ScholarPubMed
Brokmann, U., Jacquorie, M., Tberg, M., Harnisch, A., Kreutz, E.-W.Hülsenberg, D. & Roprawe, R. (2002). Exposure of photosensitive glasses with pulsed UV–laser radiation. Microsy. Technol. 8, 102104.CrossRefGoogle Scholar
Cheng, Y., Sugioka, K., Midorikawa, K., Masuda, M., Toyoda, K., Kawachi, M. & Shihoyama, K. (2003). Three–dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. Opt. Lett. 28, 11441146.CrossRefGoogle ScholarPubMed
Davis, K.M., Miura, K., Sugimoto, N. & Hirao, K. (1996). Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 17291731.CrossRefGoogle ScholarPubMed
Dietrich, T.R., Ehrfeld, W., Lacher, M., Kramer, M. & Speit, B. (1996). Fabrication technologies for microsystems utilizing photoetchable glass. Microelect. Eng. 30, 497504.CrossRefGoogle Scholar
Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Giulietti, D., Betti, S., Galimberti, M., Gamucci, A., Giulietti, A., Gizzi, L.A., Labate, L., Levato, T., Tomassini, P., Marques, J.R., Bourgeois, N., Dobosz, S., Ceccotti, T., Monot, P., Reau, F., Popescu, H., D'oliveira, P., Martin, P.H., Fukuda, Y., Boldarev, A.S., Gasilov, S.V. & Gasilov, V.A. (2008). Non-adiabatic cluster expansion after ultra short laser interaction, Laser Part. Beams 26, 6981.CrossRefGoogle Scholar
Fernandez, J.C., Hegelich, B.M., Cobble, J.A., Flippo, K.A., Letzring, S.A., Johnson, R.P., Gautier, D.C., Shimada, T., Kyrala, G.A., Wang, Y.Q., Wetteland, C.J. & Schreiber, J. (2005). Laser–ablation treatment of short–pulse laser targets: Toward an experimental program on energetic–ion interactions with dense plasmas. Laser Part. Beams 23, 267273.CrossRefGoogle Scholar
Fisette, B. & Meunier, M. (2006). Three–dimensional microfabrication inside photosensitive glasses by femtosecond laser. J. Laser Micro/Nanoeng. 1, 711.Google Scholar
Gamaly, E.G., Rode, A.V., Luther–Davies, B. & Tikhonchuk, V.T. (2002). Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas 9, 949957.CrossRefGoogle Scholar
Gottschlich, N. (2004). Production of plastic components for microfluidic applications. Business Briefing: Future Drug Discovery March, 14.Google Scholar
Gould, P. (2004). Microfluidics realizes potential. Mater. Today 7, 4852.Google Scholar
Helvajian, H., Fuqua, P.D., Hansen, W.W. & Janson, S. (2001). Laser microprocessing for nanosatellite microthruster applications. Riken Rev. 32, 5763.Google Scholar
Hnatovsk, C., Taylor, R.S., Simova, E., Rajeev, P.P., Rayner, D.M., Bhardwaj, V.R. & Corkum, P.B. (2006). Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching. Appl. Phys. A 84, 4761.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkova, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.CrossRefGoogle Scholar
Khan Malek, C.G. (2006). Laser processing for bio–microfluidics applications (part II). Anal. Bioanal. Chem. 385, 13621369.CrossRefGoogle ScholarPubMed
Kikutani, Y., Horiuchi, T., Uchiyama, K., Hisamoto, H., Tokeshi, M. & Kitamori, T. (2002). Glass microchip with three-dimensional microchannel network for 2–3–2 parallel synthesis. Lab Chip 2, 188192.CrossRefGoogle Scholar
Lam, Y.C., Tran, D.V. & Zheng, H.Y. (2007). A study of substrate temperature distribution during ultrashort laser ablation of bulk copper. Laser Part. Beams 25, 155159.CrossRefGoogle Scholar
Livingston, F.E. & Helvajian, H. (2005). Variable UV laser exposure processing of photosensitive glass–ceramics: Maskless micro- to meso-scale structure fabrication. Appl. Phys. A 81, 15691581.CrossRefGoogle Scholar
Manz, A., Graber, N. & Widmer, H.M. (1990). Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sen. Actuators B 1, 244248.CrossRefGoogle Scholar
Marcinkevičius, A., Juodkazis, S., Watanabe, M., Miwa, M., Matsuo, S., Misawa, H. & Nishii, J. (2001). Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26, 277279.CrossRefGoogle Scholar
Mijatovic, D., Eijkel, J.C.T. & Van Den Berg, A. (2005). Technologies for nanofluidic systems: Top-down vs. bottom-up: A review. Lab Chip 5, 492500.CrossRefGoogle ScholarPubMed
Pihl, J., Sinclair, J., Karlsson, M. & Orwar, O. (2005). Microfluidics for cell–based assays. Materials today. 8, 4651.CrossRefGoogle Scholar
Richet, P., Mysen, B.O. & Andrault, D. (1996). Melting and premelting of silicates: Raman spectroscopy and X–ray diffraction of Li2SiO3 and Na2SiO3. Phys Chem Minerals 23, 157172.CrossRefGoogle Scholar
Stillman, J., Judy, J. & Helvajian, H. (2008). Aspect ratios, sizes, and etch rates in photostructurable glass–ceramic. Proc. of SPIE. 6882, 68820J/1–11.CrossRefGoogle Scholar
Sugioka, K., Cheng, Y. & Midorikawa, K. (2007). “All-in-One” Chip Fabrication by 3D Femtosecond Laser Microprocessing for Biophotonics. J. Phys. Conf. Series 59, 533538.CrossRefGoogle Scholar
Sugioka, K., Cheng, Y. & Midorikawa, K. (2005). Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture. Appl. Phys. A 81, 110.CrossRefGoogle Scholar
Wang, Z., Sugioka, K. & Midorikawa, K. (2007 a). Three-dimensional integration of micro-optical components buried inside photosensitive glass by femtosecond laser direct writing. Appl. Phys. A 89, 951955.CrossRefGoogle Scholar
Wang, Z., Sugioka, K. & Midorikawa, K. (2008). Fabrication of integrated microchip for optical sensing by femtosecond laser direct writing of Foturan glass. Appl. Phys. A 93, 225229.CrossRefGoogle Scholar
Wang, Z., Sugioka, K., Hanada, Y. & Midorikawa, K. (2007 b). Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing. Appl. Phys. A 88, 699704.CrossRefGoogle Scholar
Yu, W., Yu, M.Y., Xu, H., Tian, Y.W., Chen, J. & Wong, A.Y. (2007). Intense local plasma heating by stopping of ultrashort, ultraintense laser pulse in dense plasma. Laser Part. Beams 25, 631638.CrossRefGoogle Scholar