Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T05:07:20.676Z Has data issue: false hasContentIssue false

Two-dimensional quantum hydrodynamic model for the heating of a solid target using a Gaussian cluster

Published online by Cambridge University Press:  29 October 2012

Ya Zhang
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China
Yuan-Hong Song
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China
Yong-Tao Zhao
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, LanzhouChina
You-Nian Wang*
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China
*
Address correspondence and reprint requests to: You-Nian Wang, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China. E-mail: [email protected].

Abstract

This paper presents numerical simulations to study the heating of a two-dimensional (2D) solid target under an ion cluster interaction. 2D quantum hydrodynamic (QHD) model is employed for the heating of solid target to warm dense matter on a picosecond time scale. A Gaussian cluster is used to uniformly heat the solid target to a temperature of several eV. The density and temperature of the target are calculated by a full self-consistent treatment of the QHD formalisms and the Poisson's equation. The technique described in this paper provides a method for creating uniformly heated strongly coupled plasma states.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boris, J.P., Landsberg, A.M., Oran, E.S. & Gardner, J.H. (1993). LCPFCT–flux-corrected transport algorithm for solving generalized continuity equations. In NRL Memorandom Report 6410. Washington, DC: Naval Research Laboratory, 20375–5320.Google Scholar
Brambrink, E., Roth, M., Blazevic, A. & Schlegel, T. (2006). Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration. Laser Part. Beams 24, 163168.CrossRefGoogle Scholar
Chen, Z., Cockburn, B., Gardner, C.L. & Jerome, J.W. (1995). Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode. J. Comput. Phys. 117, 274280.CrossRefGoogle Scholar
Deutsch, C. (1986). Inertial confinement fusion driven by intense ion beams. Ann. Phys. (Paris) 11, 1111.Google Scholar
Deutsch, C., Maynard, G., Bimbot, R., Gardes, D., Dellanegra, S., Dumail, M., Kubica, B., Richard, A., River, M.F., Sernagean, A., Fleurier, C., Sanba, A., Hoffmann, D.H.H., Weyrich, K. & Wahl, H. (1989). Ion beam-plasma interaction: A standard model approach. Nucl. Instrum. Methods Phys. Res. A 278, 3843.CrossRefGoogle Scholar
Deutsch, C. (1992). Ion cluster interaction with cold targets for ICF: Fragmentation and stopping. Laser Part. Beams 10, 217226.CrossRefGoogle Scholar
Haas, F., Manfredi, G. & Feix, M. (2000). Multistream model for quantum plasmas. Phys. Rev. E 62, 2763.CrossRefGoogle ScholarPubMed
Hoffmann, D.H.H. (2008). Intense laser and particle beams interaction physics toward inertial fusion. Laser Part. Beams 26, 295296.Google Scholar
Hoffmann, D.H.H., Fortov, V.E., Kuster, M., Mintsev, V., Sharkov, B.Y., Tahir, N.A., Udrea, S., Varentsov, D. & Weyrich, K. (2009). High energy density physics generated by intense heavy ion beams. Astrophys Space Sci. 322, 167177.CrossRefGoogle Scholar
Hoffmann, D.H.H., Tahir, N.A., Udreal, S., Rosmej, O., Meister, C.V., Varentsov, D., Roth, M., Schaumann, G., Frank, A., Blažević, A., Ling, J., Hug, A., Menzel, J., Hessling, TH., Harres, K., Günther, M., El-Moussatil, S., Schumacher, D. & Imran, M. (2010). High energy density physics with heavy ion beams and related interaction phenomena. Contrib. Plasma Phys. 50, 715.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Hu, Z.-H., Song, Y.-H., Mišković, Z.L. & Wang, Y.-N. (2011). Energy dissipation of ion beam in two-component plasma in the presence of laser irradiation. Laser Part. Beams 29, 299304.CrossRefGoogle Scholar
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2012). Time evolution and energy deposition for ion clusters injected into magnetized two-component plasmas. Phys. Rev. E 85, 016402.CrossRefGoogle ScholarPubMed
Manfredi, G. & Haas, F. (2001). Self-consistent fluid model for a quantum electron gas. Phys. Rev. B 64, 075316.CrossRefGoogle Scholar
More, R.M., Warren, K.H., Young, D.A. & Zimmerman, G.B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.CrossRefGoogle Scholar
Nellis, W.J. (2006). Dynamic compression of materials: Metallization of fluid hydrogen at high pressures. Rep. Prog. Phys. 69, 14791580.CrossRefGoogle Scholar
Nettelmann, N., Holst, B., Kietzmann, A., French, M., Redmer, R. & Blaschke, D. (2008). Ab initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. Astrophysic. J. 683, 12171228.CrossRefGoogle Scholar
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F. & Ruhl, H. (2003). Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004.CrossRefGoogle ScholarPubMed
Stöckl, C., Frankenheim, O.B., Roth, M., Suß, W., Wetzler, H., Seelig, W., Kulish, M., Dornik, M., Laux, W., Spiller, P., Stetter, M., Stöwe, S., Jacoby, J. & Hoffmann, D.H.H. (1996). Interaction of heavy ion beams with dense plasmas. Laser Part. Beams 14, 561574.CrossRefGoogle Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.CrossRefGoogle Scholar
Tahir, N.A., Kim, V., Matvechev, A., Ostrik, A., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2007). Numerical modeling of heavy ion induced stress waves in solid targets. Laser Part. Beams 25, 523540.CrossRefGoogle Scholar
Tahir, N.A., Schmidt, R., Shutov, A., Lomonosov, I.V., Piriz, A.R., Hoffmann, D.H.H., Deutsch, C. & Fortov, V.E. (2009a). Large hadron collider at CERN: Beams generating high-energy-density matter. Phys. Rev. E 79, 046410.CrossRefGoogle ScholarPubMed
Tahir, N.A., Spiller, P., Shutov, A., Lomonosov, I.V., Piriz, A.R., Redmer, R., Hoffmann, D.H.H., Fortov, V.E., Deutsch, C. & Bock, R.M. (2009b). Proposed high energy density physics research using intense particle beams at FAIR: The HEDgeHOB collaboration. IEEE Trans. Plasma Sci. 37, 12671275.CrossRefGoogle Scholar
Tahir, N.A., Shutov, A., Piriz, A.R., Lomonosov, I.V., Deutsch, C., Spiller, P. & Stöhlker, TH. (2011). Application of intense heavy ion beams to study high energy density physics. Plasma Phys. Control. Fusion 53, 124004.CrossRefGoogle Scholar
Zhang, Y., Song, Y.-H. & Wang, Y.-N. (2011a). Stopping power for a charged particle moving through three-dimensional nonideal finite-temperature electron gases. Phys. Plasmas 18, 072701.Google Scholar
Zhang, Y., Song, Y.-H. & Wang, Y.-N. (2011b). Nonlinear wake potential and stopping power for charged particles interacting with a one-dimensional electron gas. Phys. Plasmas 18, 112705.Google Scholar
Zhao, Y., Xu, H., Zhao, H., Xia, J., Jin, G., Ma, X., Liu, Y., Yang, Z., Zhang, P., Wang, Y., Li, D., Zhao, H., Zhan, W., Xu, Z., Zhao, D., Li, F. & Chen, X. (2009). An outlook of heavy ion driven plasma research at IMP-Lanzhou. Nucl. Instrum. Meth. Phys. Res. B 267, 163166.CrossRefGoogle Scholar
Zhao, X. & Shin, Y.C. (2012). A two-dimensional comprehensive hydrodynamic model for femtosecond laser pulse interaction with metals. J. Phys. D: Appl. Phys. 45, 105201.CrossRefGoogle Scholar
Zwicknagel, G., Toepffer, C. & Reinhard, P.G. (1999). Stopping of heavy ions in plasmas at strong coupling. Phys. Rep. 309, 117208.CrossRefGoogle Scholar