Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T16:00:28.119Z Has data issue: false hasContentIssue false

Two-dimensional beam smoothing technique for KrF laser systems

Published online by Cambridge University Press:  09 March 2009

Isao Matsushima
Affiliation:
Electrotechnical Laboratory, 1–1-4, Umezono, Tsukuba, 305, Japan
Hidehiko Yashiro
Affiliation:
Electrotechnical Laboratory, 1–1-4, Umezono, Tsukuba, 305, Japan
Toshihisa Tomie
Affiliation:
Electrotechnical Laboratory, 1–1-4, Umezono, Tsukuba, 305, Japan
Isao Okuda
Affiliation:
Electrotechnical Laboratory, 1–1-4, Umezono, Tsukuba, 305, Japan
Yuji Matsumoto
Affiliation:
Electrotechnical Laboratory, 1–1-4, Umezono, Tsukuba, 305, Japan
Eisuke Miura
Affiliation:
Electrotechnical Laboratory, 1–1-4, Umezono, Tsukuba, 305, Japan
Eiichi Takahashi
Affiliation:
Electrotechnical Laboratory, 1–1-4, Umezono, Tsukuba, 305, Japan
Yoshiro Owadano
Affiliation:
Electrotechnical Laboratory, 1–1-4, Umezono, Tsukuba, 305, Japan

Abstract

Broad-band random-phase (BRP) irradiation is one of the beam smoothing techniques for KrF laser drivers. We have introduced this technique into the KrF laser system ASHURA. By one-dimensional (ID) BRP smoothing, the speckle pattern in conventional random-phase irradiation has been removed. Two BRP beams were overlap-focused on the target incoherently. Although the obtained profile is rather smooth, some low-frequency nonuniformity remains. To improve the uniformity, a new technique for two-dimensional (2D) smoothing has been proposed. In this technique, a wedged etalon is used to get angular dispersion to the orthogonal direction to the ID BRP effect. The preliminary experiment has been carried out.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Deng, X. et al. 1986 Appl. Optics 25, 377.CrossRefGoogle Scholar
Kato, Y. et al. 1984 Phys. Rev. Lett, 53, 1057.CrossRefGoogle Scholar
Lawson, J.K. et al. 1993 Proc. Soc. Photo-Opt. Instrum. Eng. 1870, 88.Google Scholar
Lehmberg, R.H. & Obenschain, S.P. 1983 Optics Comm. 46, 27.CrossRefGoogle Scholar
Lehmberg, R.H. & Goldhar, J. 1987 Fusion Tech. 11, 532.CrossRefGoogle Scholar
Matsushima, I. et al. 1991 Optics Comm. 84, 175.CrossRefGoogle Scholar
Matsushima, I. et al. 1993 Laser Part. Beams 11, 385.CrossRefGoogle Scholar
Owadano, Y. et al. 1993 Laser Part. Beams 11, 347.CrossRefGoogle Scholar
Skupsky, S. et al. 1989 J. Appl. Phys. 66, 3456.CrossRefGoogle Scholar
Skupsky, S. & Kessler, T.J. 1993 J. Appl. Phys. 74, 4310.CrossRefGoogle Scholar
Steavenson, R.M. et al. 1994 Optics Lett. 19, 363.CrossRefGoogle Scholar
Véron, D. et al. 1988 Optics Comm. 65, 42.CrossRefGoogle Scholar