Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T05:41:30.713Z Has data issue: false hasContentIssue false

Trends in heavy ion interaction with plasma

Published online by Cambridge University Press:  30 October 2012

Yongtao Zhao
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
Zhanghu Hu
Affiliation:
Dalian University of Technology, Dalian, China
Rui Cheng
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
Yuyu Wang
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
Haibo Peng
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
Alexander Golubev
Affiliation:
Institute for Theoretical and Experimental Physics, Moscow, Russia
Xiaoan Zhang
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China Xianyang Normal University, Xianyang, China
Xia Lu
Affiliation:
School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
Dacheng Zhang
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
Xianming Zhou
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
Xing Wang
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China Department of Applied Physics, Xi'an Jiaotong University, Xi'an, China
Ge Xu
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
Jieru Ren*
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
Yongfeng Li
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
Yu Lei
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
Yuanbo Sun
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
Jiangtao Zhao
Affiliation:
School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
Tieshan Wang
Affiliation:
School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
Younian Wang
Affiliation:
Dalian University of Technology, Dalian, China
Guoqing Xiao
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
*
Address correspondence and reprint requests to: Jieru Ren, Institute of Modern Physics, CAS, Nanchang Road 509, 730000 Lanzhou, China. E-mail: [email protected]

Abstract

In this work, we review current trends in China to investigate beam plasma interaction phenomena. Recent progresses in China on low energy heavy ions and plasma interaction, ion beam-plasma interactions under the influences of magnetic fields, high energy heavy ion radiography through marginal range method, energy deposition of highly charged ions on surfaces and Raman spectroscopy of surfaces after irradiation of highly charged ions are presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adonin, A., Turtikov, V., Ulrich, A., Jacoby, J., Hoffmann, D.H.H. & Wieser, J. (2009). Intense heavy ion beams as a pumping source for short wavelength lasers. Laser Part. Beams 27, 379391.CrossRefGoogle Scholar
Aumayr, F. & Winter, H.P. (2007). Slow Heavy-Particle Induced Electron Emission. New York: Springer, 80112.Google Scholar
Aumayr, F. & Winter, H.P. (2003). Slow highly charged ions -a new tool for surface nanostructuring? e-J. Surf. Sci. Nanotech. 1, 171174.CrossRefGoogle Scholar
Aumayr, F., El-Said, A.S. & Meissl, W. (2008). Nano-sized surface modifications induced by the impact of slow highly charged ions—A first review. Nucl. Instr. and Meth. B 266, 2729.CrossRefGoogle Scholar
An, B., Fukuyama, S., Yokogawa, K. & Yoshimura, M. (2002). Evolution of Ar+-damaged graphite surface during annealing as investigated by scanning probe microscopy. J. Appl. Phys. 92, 2317.CrossRefGoogle Scholar
Arnau, A., Aumayr, F., Echenique, P.M., Grether, M, Heiland, W., Limburg, J., Morgenstern, R., Roncin, P., Schippers, S., Schuch, R., Stolterfoht, N., Varga, P., Zouros, T.J.M. & Winter, H.P. (1997). Interaction of slow multicharged ions with solid surfaces. Surf. Sci. Rep. 27, 113239.CrossRefGoogle Scholar
Arista, N.R. & Bringa, E.M. (1997). Interaction of ion clusters with fusion plasmas: Scaling laws. Phys. Rev. A 55, 28732881.CrossRefGoogle Scholar
Aumayr, F., Elsaid, A. & Meissl, W. (2008). Nano-sized surface modifications induced by the impact of slow highly charged ions—A first review. Nucl. Instr. and Meth. B 266, 27292735.CrossRefGoogle Scholar
Bringa, E.M. & Arista, N.R. (1995). Collective effects in the energy loss of ion beams in fusion plasmas. Phys. Rev. E 52, 30103014.CrossRefGoogle ScholarPubMed
Butler, S.T. & Buckingham, M.J. (1962). Energy loss of a fast ion in a plasma. Phys. Rev. 126, 14.CrossRefGoogle Scholar
Baragiola, R.A. & Dukes, C.A. (1996). Plasmon-assisted electron emission from Al and Mg surfaces by slow ions. Phys. Rev. Lett. 76, 25472550.CrossRefGoogle ScholarPubMed
Bock, R.M., Hoffmann, D.H.H., Hofmann, I. & Logan, G. (2005). Inertial Confinement Fusion: Heavy Ions. Landolt–Börnstein. In Energy Technologies: Nuclear Energy. Heidelberg: Springer-Verlag, 529554.CrossRefGoogle Scholar
Benton, E.V., Henke, R.P. & Tobias, C.A. (1973). Heavy-Particle Radiography. Sci. 182, 474476.CrossRefGoogle ScholarPubMed
Biersack, J.P. & Haggmark, L. (1980). A Monte Carto computer program for the transport of energetic ions in amorphous targets. Nucl. Instum. Meth. 174, 257269.CrossRefGoogle Scholar
Clarke, R.J., Simpson, P.T., Kar, S., Green, J.S., Beller, C., Carroll, D.C., Dromey, B., Kneip, S., Markey, K., Mckenna, P., Murphy, W., Nagel, S., Willingale, L. & Zepf, M. (2008). Nuclear activation as a hih dynamic range diagnostic of laser-plasma interactions. Nucl. Instrum. Meth. Phys. Res. A 585, 117120.CrossRefGoogle Scholar
COUNCIL REGULATION (EC) No. 975/98 on denominations and technical specifications of euro coins intended for circulation (1998), Official Journal of the European Communities 139, 68.Google Scholar
Chetty, I.J. & Charland, P.M. (2002). Investigation of Kodak extended dose range (EDR) film for megavoltage photon beam dosimetry. Phys. Med. Biol. 47, 36293641.CrossRefGoogle ScholarPubMed
Cookson, J.A. (1974). Radiography with Protons. Naturwissenschaften 61, 184191.CrossRefGoogle ScholarPubMed
Chen, P., Dawson, J.M., Huff, R.W. & Katsouleas, T. (1985), Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma. Phys. Rev. Lett. 54, 693696.CrossRefGoogle ScholarPubMed
Cereceda, C., Deutsch, C., Peretti, M.De, Sabatier, M. & Nersisyan, H.B. (2000). Dielectric response function and stopping power of dense magnetized plasma. Phys. Plasmas 7, 28842893.CrossRefGoogle Scholar
Cereceda, C., Peretti, M.De & Deutsch, C. (2005). Stopping power for arbitrary angle between test particle velocity and magnetic field. Phys. Plasmas 12, 022102.CrossRefGoogle Scholar
Compagnini, G., Giannazzo, F., Sonde, S., Raineri, V. & Rimini, E. (2009). Ion irradiation and defect formation in single layer graphene. Carbon 47, 32013207.CrossRefGoogle Scholar
Dresselhaus, M.S., Dresselhaus, G. & Hofmann, M. (2008). Raman spectroscopy as a probe of graphene and carbon nanotubes. Phil. Trans. R. Soc. A 366, 231236.CrossRefGoogle ScholarPubMed
D'avanzo, J., Lontano, M. & Bortignon, P.F. (1992). Fast-ion energy deposition in dense plasmas with two-ion correlation effects. Phys. Rev. A 45, 61266129.CrossRefGoogle ScholarPubMed
D'avanzo, J., Hofmann, I. & Lontano, M. (1998). Charge dependence of nonlinear stopping power. Nucl. Instr. Meth. A 415, 632636.CrossRefGoogle Scholar
Deutsch, C. (1986). Inertial confinement fusion driven by intense ion beams. Ann. Phys. (Paris) 11, 1111.Google Scholar
Deutsch, C. (1990). Interaction of ion cluster beams with cold matter and dense plasmas, Laser Part. Beams 8, 541553.CrossRefGoogle Scholar
Deutsch, C. & Fromy, P. (1995). Correlated ion stopping in a dense classical plasma. Phys. Rev. E 51, 632641.CrossRefGoogle Scholar
Drake, R.P. (2006). High-Energy-Density Physics. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Dietrich, K.-G., Hoffmann, D.H.H. & Boggasch, E. (1992). Charge state of fast heavy ions in a hydrogen plasma. Phys. Rev. Lett. 69, 36233626.CrossRefGoogle Scholar
Drozdovskiy, A.A., Golubev, A.A., Novozhilov, Y.B., Sasorov, P.V., Savin, S.M., Yanenko, V.V. & Bochkov, V.D. (2011). Plasma lens for transformation the ITEP heavy ion accelerator with TDI-pseudosparks. Fusion Engineering (SOFE), 2011 IEEE/NPSS 24th Symposium, 1–4.CrossRefGoogle Scholar
Delaunay, M., Fehrringer, M., Geller, R., Hitz, D., Varga, P. & Winter, H. (1987). Electron emission from a metal surface bombarded by slow highly charged ions. Phys. Rev. B 35, 42324235.CrossRefGoogle ScholarPubMed
Fabrikant, J., Holley, W.R., Mcfarland, E.W. & Tobias, C.A. (1982). Heavy-ion radiography and heavy-ion computed tomography. 3rd international symposium of radiation protection-advances in theory and practice, LBL-14001, 1–6.Google Scholar
Ferguson, A.T.G., Cookson, J.A. & Armitage, B.H. (1972). Proton radiography. Non-Destructive Testing 5, 225228.Google Scholar
Facsko, S., Heller, R., El-Said, A.S., Meissl, W. & Aumayr, F. (2009). Surface nanostructures by single highly charged ions. J. Phys.: Condens. Matter 21, 224012.Google ScholarPubMed
Ferrari, A. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 4757.CrossRefGoogle Scholar
Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C. & Wirtz, L. (2007). Raman imaging of graphene. Solid State Commun. 143, 4446.CrossRefGoogle Scholar
Golubev, A.A., Demidov, V.S., Demidova, E.V., Dudin, S.V., Kantsyrev, A.V., Kolesnikov, A.A., Mintsev, V.B., Smirnov, G.N., Turtikov, V.I., Utkin, A.V., Fortov, V.E. & Sharkov, B.Yu. (2010). Diagnostics of fast processes by charged particle beams at TWAC-ITEP accelerator-accumulator facility. Techn. Phys. Lett. 36, 177180.CrossRefGoogle Scholar
Golubev, A., Turtikov, V., Fertman, A., Roudskoy, I., Sharkov, B., Geissel, M., Neuner, U., Roth, M., Tauschwitz, A., Wahl, H., Hoffmann, D.H.H., Funk, U., Süß, W. & Jacoby, J. (2001). Experimental investigation of the effective charge state of ions in beam-plasma interaction. Nucl. Instrum. Meth. Phys. Res. A 464, 247252.CrossRefGoogle Scholar
Gericke, D.O. & Schlanges, M. (1999), Beam-plasma coupling effects on the stopping power of dense plasmas. Phys. Rev. E 60, 904910.CrossRefGoogle ScholarPubMed
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005), Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2009 a). Dynamic polarization and energy dissipation for charged particles moving in magnetized two-component plasmas. Phys. Rev. E 79, 016405.CrossRefGoogle ScholarPubMed
Hu, Z.-H., Song, Y.-H., Wang, G.-Q. & Wang, Y.-N. (2009 b). Nonlinear stopping power for ions moving in magnetized two-component plasmas. Phys. Plasmas 16, 112304.CrossRefGoogle Scholar
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2010). Wake effect and stopping power for a charged ion moving in magnetized two-component plasmas: 2D particle-in-cell simulation. Phys. Rev. E 82, 026404.CrossRefGoogle Scholar
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2012). Time evolution and energy deposition for ion clusters injected into magnetized two-component plasmas. Phys. Rev. E 85, 016402.CrossRefGoogle ScholarPubMed
Hunger, H.-J. & Kuechler, L. (1979). Measurements of the electron backscattering coefficient for quantitative EPMA in the energy range of 4 to 40 keV. Phys. Stat. Sol. (a) 56, K45K48.CrossRefGoogle Scholar
Hughees, I.G., Burgdoerfer, J., Folkerts, L., Havener, C.C., Overbury, S.H., Robinson, M.T., Zehner, D.M., Zeijlmans Van Emmichoven, P.A. & Meyer, F.W. (1993). Separation of kinetic and potential electron emission arising from slow multicharged ion-surface interactions. Phys. Rev. Lett. 71, 291294.CrossRefGoogle Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardés, D., Bimbot, R. & Fleurier, C. (1990). Energy loss of heavy ions in a plasma target. Phys. Rev. A 42, 23132321.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 47.CrossRefGoogle Scholar
Hayderer, G., Cernusca, S., Schmid, M., Varga, P., Winter, H. & Aumayr, F. (2001). Kinetically assisted potential sputtering of insulators by highly charged ions. Phys. Rev. Lett. 86, 35303533.CrossRefGoogle ScholarPubMed
Hida, A., Meguro, T., Maeda, K. & Aoyagi, Y. (2003). Analysis of surface modifications on graphite induced by slow highly charged ion impact. Nucl. Instr. and Meth. B 205, 736740.CrossRefGoogle Scholar
Ichimaru, S. (1973). Basic Principles of Plasma Physics: A Statistical Approach. Reading: Benjamin.Google Scholar
Jacoby, J., Hoffmann, D.H.H., Laux, W., Müller, R.W., Wahl, H., Weyrich, K., Boggasch, E., Heimrich, B., Stöckl, C. & Wetzler, H. (1995). Stopping of heavy ions in a hydrogen plasma. Phys. Rev. Lett. 74, 15501553.CrossRefGoogle Scholar
Kuznetsov, A.P., Bashutin, O.A., Byalkovskii, O.A., Vovchenko, E.D., Korotkov, K.E. & Savjolov, A.S. (2008). Interferometric studies of the electron density dynamics at the periphery of a micropinch discharge, Fizika Plazmy 34, 193198.Google Scholar
Kurz, H., Aumayr, F., Winter, H.P., Schneider, D., Briere, M.A. & Mcdonald, J.W. (1994). Electron emission and image-charge acceleration for the impact of very highly charged ions on clean gold. Phys. Rev. A 49, 4693.CrossRefGoogle ScholarPubMed
King, N.S.P., Ables, E., Adama, K., Alrick, K.R., Amann, J.F., Balzar, S., Barnes, P.D. Jr., Crow, M.L., Scusing, S.B., Eddleman, J.C., Fife, T.T., Flores, P., Fujino, D., Gallegos, R.A., Gray, N.T., Hartouni, E.P., Hogan, G.E., Holmes, V.H., Jaramillo, S.A., Knudsson, J.N., Londaon, R.K., Lopez, R.R., Mcdonald, T.E., Mcclelland, J.B., Merrill, F.E., Morley, K.B., Morris, C.L., Naivar, F.J., Parker, E.L., Park, H.S., Pazuchanics, P.D., Pillar, C., Riedel, C.M., Sarracino, J.S., Shelley, F.E. Jr., Stacy, H.L., Takala, B.E., Thompson, R., Tucker, H.E., Yates, G.J., Ziock, H.-J. & Zumbro, J.D. (1999). An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instrum. Meth. Phys. Res. A 424, 8491.CrossRefGoogle Scholar
Koehler, A.M. (1968). Proton radiography. Sci. l60, 303304.CrossRefGoogle Scholar
Keefe, D. (1982). Inertial confinement fusion. Ann. Rev. Nucl. Part. Sci. 32, 391441.CrossRefGoogle Scholar
Koguchi, Y., Meguro, T., Hida, A., Takai, H., Maeda, K., Yamamoto, Y. & Aoyagi, Y. (2003). Modification of highly oriented pyrolytic graphite (HOPG) surfaces with highly charged ion (HCI) irradiation. Nucl. Instr. Meth. B 206, 202205.CrossRefGoogle Scholar
Liu, J., Neumann, R., Trautmann, C. & Mueller, C. (2001). Tracks of swift heavy ions in graphite studied by scanning tunneling microscopy. Phys. Rev. B 64, 184115.CrossRefGoogle Scholar
Lemell, C., Stockl, J., Burgdoerfer, J., Betz, G., Winter, H.P. & Aumayr, F. (1998). Multicharged ion impact on clean Au(111): Suppression of kinetic electron emission in glancing angle scattering. Phys. Rev. Lett. 81, 19651968.CrossRefGoogle Scholar
Logan, B.G., Bieniosek, F.M., Celata, C.M., Henestroza, E., Kwan, J.W., Lee, E.P., Leitner, M., Roy, P.K., Seidl, P.A., Eylon, S., Vay, J.-L., Waldron, W.L., Yu, S.S., Barnard, J.J., Callahan, D.A., Cohen, R.H., Friedman, A., Grote, D.P., Kireeff Covo, M., Meier, W.R., Molvik, A.W., Lund, S.M., Davidson, R.C., Efthimion, P.C., Gilson, E.P., Grisham, L.R., Kaganovich, I.D., Qin, H., Startsev, E.A., Rose, D.V., Welch, D.R., Olson, C.L., Kishek, R.A., O'shea, P., Haber, I. & Prost, L.R. (2005). Overview of us heavy ion fusion research. Nucl. Fusion 45, 131.CrossRefGoogle Scholar
Mochiji, K., Yamamoto, S., Shimizu, H., Ohtani, S., Seguchi, T. & Kobayashi, N. (1997). Scanning tunneling microscopy and atomic force microscopy study of graphite defects produced by bombarding with highly charged ions. J. Appl. Phys. 82, 6037.CrossRefGoogle Scholar
Minniti, R., Ratliff, L.P. & Gillaspy, J.D. (2001). In-situ observation of surface modification induced by highly charged ion bombardment. Phys. Scr. T 92, 22.Google Scholar
Mcdonald, J.W., Schenkel, T., Hamza, A.V. & Schneider, D.H.G. (2005). Material dependence of total electron emission yields following slow highly charged ions impact. Nucl. Instr. Meth. B 240, 829833.CrossRefGoogle Scholar
Meguro, T., Hida, A., Koguchi, Y., Miyamoto, S., Yamamoto, Y., Takai, H., Maeda, K. & Aoyagi, Y. (2003). Nanoscale transformation of sp2 to sp3 of graphite by slow highly charged ion irradiation. Nucl. Instr. Meth. B 209, 170174.CrossRefGoogle Scholar
Nakamura, N., Terada, M., Nakai, Y., Kanai, Y., Ohtani, S., Komaki, K. & Yamazaki, Y. (2005). SPM observation of nano-dots induced by slow highly charged ions. Nucl. Instr. Meth. B 232, 261265.CrossRefGoogle Scholar
Ni, Z., Wang, Y., Yu, T. & Shen, Z. (2008). Raman spectroscopy and imaging of graphene. Nano Res. 1, 273291.CrossRefGoogle Scholar
Novotny, R. (2005). Inorganic scintillators—A basic material for instrumentation in physics. Nucl. Instum. Meth. Phys. Res. A 537, 15.CrossRefGoogle Scholar
Nersisyan, H.B. (1998). Stopping of charged particles in a magnetized classical plasma. Phys. Rev. E 58, 36863692.CrossRefGoogle Scholar
Nersisyan, H.B. & Deutsch, C. (1998). Correlated fast ion stopping in magnetized classical plasma. Phys. Lett. A 246, 325328.CrossRefGoogle Scholar
Nersisyan, H.B., Zwicknagel, G. & Toepffer, C. (2003). Energy loss of ions in a magnetized plasma: Conformity between linear response and binary collision treatments. Phys. Rev. E 67, 026411.CrossRefGoogle Scholar
Ng, A., Ao, T., Perror, F., Dharma-Wardana, M.W.C. & Foord, M.E. (2005). Idealized slab plasma approach for the study of warm dense matter. Laser Part. Beams 23, 527537.CrossRefGoogle Scholar
Pikuz, S.A., Chefonov, O.V., Gasilov, S.V., Komarov, P.S., Ovchinnikov, A.V., Skobelev, I.Y., Ashitkov, S.Y., Agranat, M.V., Zigler, A. & Faenov, A.Y. (2010). Micro-radiography with laser plasma X-ray source operating in air atmosphere. Laser Part. Beams 28, 393397.CrossRefGoogle Scholar
Peter, T. & Meyer-Ter-Vehn, J. (1991 a). Energy loss of heavy ions in dense plasma. I. Linear and nonlinear Vlasov theory for the stopping power. Phys. Rev. A 43, 19982014.CrossRefGoogle ScholarPubMed
Peter, T. & Meyer-Ter-Vehn, J. (1991b). Energy loss of heavy ions in dense plasma. II. Nonequilibrium charge states and stopping powers. Phys. Rev. A 43, 20152030.CrossRefGoogle ScholarPubMed
Piriz, A.R., López Cela, J.J., Serna Moreno, M.C., Tahir, N.A. & Hoffmann, D.H.H. (2006). Thin plate effects in the Rayleigh-Taylor instability of elastic solids. Laser Part. Beams 24, 275.CrossRefGoogle Scholar
Pines, D. & Bohm, D. (1951). A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys. Rev. 85, 338353.CrossRefGoogle Scholar
Prawer, S., Nugent, K.W., Lifshitz, Y., Lempert, G.D., Grossman, E., Kulik, J., Avigal, I. & Kalish, R. (1996). Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition. Diamond Realted Mater. 5, 433438.CrossRefGoogle Scholar
Qayyum, A., Schustereder, W., Mair, C., Scheier, P., Mair, T.D., Cernusca, S., Winter, H. & Aumayr, F. (2003). Electron emission and molecular fragmentation during hydrogen and deuterium ion impact on carbon surfaces. J.Nucl. Mater. 313–316, 670674.CrossRefGoogle Scholar
Rostoker, N. & Rosenbluth, M.N. (1960). Test particles in a completely ionized Plasma. Phys. Fluids 3, 114.CrossRefGoogle Scholar
Roudskoy, I.V. (1996). General features of highly charged ion generation in laser-produced plasmas. Laser Part. Beams 14, 369384.CrossRefGoogle Scholar
Renk, T.J., Mann, G.A. & Torres, G.A. (2008). Performance of a pulsed ion beam with a renewable cryogenically cooled ion source. Laser Part. Beams 26, 545554.CrossRefGoogle Scholar
Sigmund, P. (1969). Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184, 383416.CrossRefGoogle Scholar
Sharkov, B. (2001). Status of heavy ion fusion. Plasma Phys. Contr. Fusion 43, A229A235.CrossRefGoogle Scholar
Schenkel, T., Barnes, A.V., Niedermayr, T.R., Hattass, M., Newman, M.W., Machicoane, G.A., Mcdonald, J.W., Hamza, A.V. & Schneider, D.H. (1999). Deposition of potential energy in solids by slow, highly charged ions. Phys. Rev. Lett. 83, 42734276.CrossRefGoogle Scholar
Stockl, J., Suta, T., Ditroi, F., Winter, H.P. & Aumayr, F. (2004). Separation of potential and kinetic electron emission for grazing impact of multiply charged Ar ions on a LiF(001) surface. Phys. Rev. Lett. 93, 263201.CrossRefGoogle ScholarPubMed
Steward, V.W. & Koehler, A.M. (1973). Proton radiographic detection of strokes, Nat. 245, 3840.CrossRefGoogle ScholarPubMed
Steward, V.W. & Koehler, A.M. (1973). Proton beam radiography in tumor detection. Sci. 179, 913914.CrossRefGoogle ScholarPubMed
Shafranova, M.G. & Shafranov, M.D. (1980). Medical ion radiography. Sov.Phys.Usp. 23, 306316.CrossRefGoogle Scholar
Spetch, E. (1989), Neutral beam heating of fusion plasmas. Rep. Prog. Phys. 52, 57121.CrossRefGoogle Scholar
Steinberg, M. & Ortner, J. (2001). Energy loss of a charged particle in a magnetized quantum plasma. Phys. Rev. E 63, 046401.CrossRefGoogle Scholar
Stix, T.H. (1972). Heating of toroidal plasmas by neutral injection. Plasma Phys. 14, 367384.CrossRefGoogle Scholar
Samano, E.C., Soto, G., Olivas, A. & Cota, L. (2002). DLC thin films characterized by AES, XPS and EELS. Appl.Surf. Sci. 202, 17.CrossRefGoogle Scholar
Schenkel, T., Barnes, A.V., Niedermayr, T.R., Hattass, M., Newman, M.W., Machicoane, G.A., McDonald, J.W., Hamza, A.V. & Schneider, D.H. (1999). Deposition of potential energy in solids by slow, highly charged ions. Phys. Rev. Lett. 83(21), 42734276.CrossRefGoogle Scholar
Thompson, E., Stork, D., de Esch, H.P.L. & The Jet Team. (1993). The use of neutral beam heating to produce high performance fusion plasmas, including the injection of tritium beams into the Joint European Torus (JET). Phys. Fluids B 5, 24682480.CrossRefGoogle Scholar
Ten, K.A., Evdokov, O.V., Zhogin, I.L., Zubkov, P.I., Kulipanov, G.N., Luk'yanchikov, L.A., Merzhievsky, L.A., Pirogov, B.Ya., Pruuel, E.R., Titov, V.M., Tolochko, B.P. & Sheromov, M.A. (2005). Density distribution reconstruction of the detonation front of high explosives using synchrotron radiation data. Nucl. Instrum. Meth. Phys. Res. A 543, 170174.CrossRefGoogle Scholar
Toyokawa, H., Ohgaki, H., Mikado, T. & Yamada, K. (2002). High-energy photon radiography system using laser-Compton scattering for inspection of bulk materials. Rev. Sci. Inst. 73, 33583362.CrossRefGoogle Scholar
Tahir, N.A., Piriz, A.R., Wouchun, G., Shutov, A., Lomonosov, I.V., Deutsch, C., Hoffmann, D.H.H. & Fortov, V.E. (2009). High energy density physics and laboratory planetary science using intense heavy ion beams at FAIR facility at Darmstadt: the HEDgeHOB collaboration. Astophys Space Sci. 322, 179188.CrossRefGoogle Scholar
Tona, M., Watanabe, H., Takahashi, S., Fujita, Y., Abe, T., Jian, S., Nakamura, N., Yoshiyasu, N., Yamada, C., Sakurai, M. & Ohtani, S. (2007). Observation of HCI-induced nanostructures with a scanning probe microscope. J. Phys: Conf. Ser. 58, 331.Google Scholar
Terada, M., Nakamura, N., Nakai, Y., Kanai, Y., Ohtani, S., Komaki, K. & Yamazaki, Y. (2005). Observation of an HCI-induced nano-dot on an HOPG surface with STM and AFM. Nucl. Instr. Meth. B 235, 452455.CrossRefGoogle Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.CrossRefGoogle Scholar
Tahir, N.A., Stöhlker, Th., Shutov, A., Lomonosov, I.V., Fortov, V.E., French, M., Nettelmann, N., Redmer, R., Piriz, A.R., Deutsch, C., Zhao, Y., Zhang, P., Xu, H., Xiao, G. & Zhan, W. (2010). Ultrahigh compression of water using intense heavy ion beams: laboratory planetary physics. New J. Phys. 12, 073022.CrossRefGoogle Scholar
Ter-Avetisyan, S., Schnurer, M., Polster, R., Nickles, P.V. & Sandner, W. (2008). First demonstration of collimation and monochromatisation of a laser accelerated proton burst. Laser Part. Beams 26, 637642.CrossRefGoogle Scholar
Teske, C., Jacoby, J., Senzel, F. & Schweizer, W. (2010). Energy transfer efficiency of a spherical theta pinch, Phys. Plasmas 17, 043501.CrossRefGoogle Scholar
Wang, Y.Y., Xiao, G.Q., Zhao, Y.T., Li, D.H., Zhao, D., Xu, Z.F. & Li, F.L. (2009). Surface nanostructure formation by the interaction of slow xenon ions on HOPG surfaces. J. Phys: Conf. Ser. 163, 12082.Google Scholar
Wang, Y.Y., Zhao, Y.T., Qayyum, A., Xiao, G.Q. (2007). Separation of potential and kinetic electron emission from Si and W induced by multiply charged neon and argon ions. Nucl. Instr. Meth. B 265, 474.CrossRefGoogle Scholar
Winter, H.P. & Aumayr, F. (1999). Hollow atoms. J. Phys. B: At. Mol. Opt. Phys. 32, 3965.CrossRefGoogle Scholar
West, D. & Sherwood, A.C. (1972). Radiography with 160 MeV proton. Nature 239, 157159.CrossRefGoogle Scholar
Walter, M., Toepffer, C. & Zwicknagel, G. (1998). Particle-in-cell simulation of the stopping power in the presence of a magnetic field. Hyperf. Interact. 115, 6772.CrossRefGoogle Scholar
Walter, M., Toepffer, C. & Zwicknagel, G. (2000). Stopping power in anisotropic, magnetized electron plasmas. Nucl. Instr. Meth. B 168, 347361.CrossRefGoogle Scholar
Wang, Q., Song, Y.-H. & Wang, Y.-N. (2000). Influences of finite Larmor radius on wake effects and stopping power for proton moving in magnetized two-component plasma. Phys. Lett. A 34, 46784683.Google Scholar
Wang, T.S., Ding, J.J., Cheng, R., Peng, H.B., Lu, X. & Zhao, Y.T. (2011). Diamond-like carbon produced by highly charged ions impact on highly oriented pyrolytic graphite. Nucl. Instr. Meth. B. 272, 1517.CrossRefGoogle Scholar
Wang, T.S., Yang, X.Y., O'Rourke, B.E., Xu, H., Chen, L., Cheng, R., Peng, H.B., Mitsuda, Y. & Yamazaki, Y. (2008). Observation of nano-dots on HOPG surface induced by highly charged Arq + impact. Chin. Phys. Lett. 25, 20202022.Google Scholar
Wang, Y.Y., Zhao, Y.T., Sun, J.Y., Qayyum, A., Liu, J., Wang, Z.G. & Xiao, G.Q. (2011). Electron emission by highly charged neon and xenon ions on fusion-relevant tungsten and graphite surfaces. Nucl. Instr. Meth. B 269, 977980.CrossRefGoogle Scholar
Xin, J.P., Zhu, X.P. & Lei, M.K. (2010). Significance of time-of-flight ion energy spectrum on energy deposition into matter by high-intensity pulsed ion beam. Laser Part. Beams 28, 429436.CrossRefGoogle Scholar
Xu, H.S. (2009). Status and prospects of HIRFL experiments. Nucl. Phys. Rev. 26, 715.Google Scholar
Zhao, Y.T., Xiao, G.Q., Xu, H.S., Zhao, H.W., Xia, J.W., Jin, G.M., Ma, X.W., Liu, Y, Yang, Z.H., Zhang, P.M., Wang, Y.Y., Li, D.H., Zhao, H.Y., Zhan, W.L., Xu, Z.F., Zhao, D., Li, F.L. & Chen, X.M. (2009). An outlook of heavy ion driven plasma research at IMP-Lanzhou. Nucl. Instr. Meth. B 267, 163166CrossRefGoogle Scholar
Zhang, X.A., Zhao, Y.T., Hoffmann, D.H.H., Yang, Z.H., Chen, X.M., Xu, Z.F., Li, F.L. & Xiao, G.Q. (2011). X-ray emission of Xe30+ ion beam impacting on Au target. Laser Part. Beams 29, 265268.CrossRefGoogle Scholar
Ziegler, J.F., Biersack, J.P. & Littmark, U. (2003). The stopping and range of ions in solids. http://www.srim.org.Google Scholar
Zwicknagel, G. (2002). Nonlinear energy loss of heavy ions in plasma. Nucl. Instr. Meth. B 197, 2238.CrossRefGoogle Scholar
Zwicknagel, G., Toepffer, C. & Reinhard, P.-G. (1999). Stopping of heavy ions in plasmas at strong coupling. Phys. Rep. 309, 117208.CrossRefGoogle Scholar