Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T10:48:22.903Z Has data issue: false hasContentIssue false

Threshold for laser driven block ignition for fusion energy from hydrogen boron-11

Published online by Cambridge University Press:  23 March 2009

N. Azizi
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran-Poonak, Iran
H. Hora*
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
G.H. Miley
Affiliation:
Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, Illinois
B. Malekynia
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran-Poonak, Iran
M. Ghoranneviss
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran-Poonak, Iran
X. He
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, China
*
Address correspondence and reprint requests to: H. Hora, Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia. E-mail: [email protected]

Abstract

Controlled fusion energy from burning hydrogen with boron-11 is of interest because no neutrons are produced. Following the scheme of ignition by spherical irradiation by laser or particle beams, one has to deal with exorbitant conditions of densities and input energies. A new approach following the scheme of block ignition with laser pulses of picosecond (ps) duration and more than petawatt (PW) power led to the possibility of plane geometry irradiation of the fuel using the anomalous effect of block ignition for deuterium tritium (DT) based on updated conditions for the initial computations. We present the extension for H-11B resulting in a very less dramatic difference to DT than in the case of spherical pellet geometry. Ignition thresholds may be only about one order of magnitude higher and the needed temperatures of about 50 keV are no problem for the skin layer acceleration by nonlinear forces (SLANF) for the block generation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Presentation at the Thirtieth European Conference on Laser Interaction with Matter, Darmstadt, Germany, 31 August–5 September 2008.

References

REFERENCES

Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401410.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Hora, H., Jablonski, S. & Wolowski, J. (2006). Studies of laser driven generation of fast-density plasma blocks for fast ignition. Laser Part. Beams 24, 249254.Google Scholar
Bigot, B. (2006). Inertial fusion science in Europe. J. Phys. 133, 38.Google Scholar
Bunker, A., Nagel, S., Redmer, R. & Roepke, G. (1997). Dissociation and thermodynamics in dense hydrogen fluid. Contrib. Plasma Phys. 37, 115128.Google Scholar
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 413422.CrossRefGoogle Scholar
Cockroft, J.D. & Walton, E.T.S. (1932). Experiments with high velocity positive ions. II. Disintegration of elements by high velocity protons. Proc. Roy. Soc. London A 137 229242.Google Scholar
Deutsch, C., Bret, A. & Fromy, P. (2005). Mitigation of electromagnetic instabilities in fast ignition scenario. Laser Part. Beams 23, 58.CrossRefGoogle Scholar
Ebeling, W., Meister, C.V., Sandig, R. & Kraeft, W.-D. (1979). Pressure ionization in nonideal alkali plasmas. Ann. Phys. 36, 321332.Google Scholar
Eliezer, S., Murakami, M. & Martinez-Val, J.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.CrossRefGoogle Scholar
Gabor, D. (1933). Elektrostatische theorie deds plasmas. Zeitschr. f. Phys. 84, 474508.CrossRefGoogle Scholar
Gabor, D. (1952). Wave theory of plasmas. Proc. Roy. Soc. London A 213, 7286.Google Scholar
Ghoranneviss, M., Malekynia, B., Hora, H., Miley, G.H. & He, X. (2008). Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration. Laser Part. Beams 26, 105111.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosemej, P., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hora, H. (1975). Laser Plasma and Nuclear Energy. New York: Plenum Press.CrossRefGoogle Scholar
Hora, H. (1977). Advanced fuel nuclear reaction feasibility using laser compression I. Nucl. Instr. Meth. 144, 1725.CrossRefGoogle Scholar
Hora, H. (1981). Physics of Laser Driven Plasmas New York: Wiley Interscience.Google Scholar
Hora, H. (2002). Fusion reactor with petawatt laser. German Patent Disclosure (Offenelgungsschrift) DE 102 08 515 A1 (28 FEB 2002, declassified 5 SEP 2002).Google Scholar
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser-plasma interaction. Czech. J. Phys. 53, 199217.CrossRefGoogle Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.CrossRefGoogle Scholar
Hora, H. (2007 b). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 2748.CrossRefGoogle Scholar
Hora, H. (2007 a). Klimakatastrophe Überwinden/Climatic Catastophe to Overcome. Regensburg, Germany: S. Roderer-Verlag.Google Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects. Laser Part. Beams 27, 207222.CrossRefGoogle Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikova, B., Kraska, J., Laska, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002). Effects of picosecond and ns laser pulses for giant ion source. Opt. Commun. 207, 333338.CrossRefGoogle Scholar
Hora, H. & Henry, B.I. (1983). Polarization shift of spectral lines in high density plasmas. Opt. Comm. 44, 218222.Google Scholar
Hora, H. & Ray, P.S. (1978). Increased nuclear fusion yields of inertial confined DT plasma due to reheat. Zeitschrift f. Natur. 33A, 890894.Google Scholar
Hora, H., Malekynia, B., Ghoranneviss, M., Miley, G.H. & He, X. (2008). Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor. Appl. Phys. Lett. 93, 011101/1–3.CrossRefGoogle Scholar
Khoda-Bakhsh, R. (1993). Volume ignition at inertial confinement fusion of hydrogen-boron(11). Nucl. Instrum. Meth. A 330, 286293.Google Scholar
Khoda-Bakhsh, R., Soltanian, A. & Amniat-Talab, M. (2008). Volume ignition of 3He pellets. NucL. Instr. Meth. Phys. Res. A 586, 839843.Google Scholar
Kulcinski, G.L. (2007). Fife minutes contribution about harvesting helium-3 from the moon for energy production, CNN-TV News, November 19.Google Scholar
Li, X.-Z., Liu, B., Chen, S., Wei, Q.M. & Hora, H. (2004). Fusion cross sections for inertial fusion energy. Laser Part. Beams 22, 469477.CrossRefGoogle Scholar
Li, X.-Z., Tian, J., Mei, M.-Y. & Li, C.-X. (2000). Sub-barrier fusion and selective resonant tunneling. Phys. Rev. C 61, 024610/1–024610/6.CrossRefGoogle Scholar
Lomonosov, I.V. (2007). Multi-phase equation of state for aluminum. Laser Part. Beams 25, 567584.Google Scholar
Malekynia, B., Hora, H., Ghoranneviss, M. & Miley, G.H. (2009). Collective alpha particle stopping for reduction of the threshold for laser fusion using nonlinear force driven plasma blocks. Laser Part. Beams 27, 233241.CrossRefGoogle Scholar
Meister, C.-V., Staude, J. & Pregla, A.V. (1999). An attempt to estimate nonideal effects on the electron partial pressure in the solar interior up to density order 5/2, Astrono. Nachrichten 320, 4347.3.0.CO;2-P>CrossRefGoogle Scholar
Miley, G.H. (1976). Fusion Energy Conversion. Hinsdale, Ill.: American Nuclear Society.Google Scholar
Miley, G.H., Hora, H., Cang, Y., Osman, F., Badziak, J., Wolowski, J., Sheng, Z.-M., Zhang, J., Zhang, W.-Y. & He, X.-T. (2008). Block ignition inertial confinement fusion (ICF) for space propulsion. http://pdf.aiaa.org/preview/CDReadyMJPC08_1874/PV2008_4612.pdfGoogle Scholar
Miley, G.H., Hora, H., Osman, F., Evans, P. & Toups, P. (2005). Single event laser fusion using ns.MJ laser pulses. Laser Part. Beams 23, 453460.Google Scholar
Moses, E., Miller, G.H. & Kauffman, R.L. (2006). The ICF status and plans in the United States. J. Phys. 133, 916.Google Scholar
Nuckolls, J.H. (1974). Laser-induced implosion and thermonuclear burn. In Laser Interaction and Related Plasma Pheonomena (Schwarz, H. and Hora, H., Eds.). New York: Plenum Press.Google Scholar
Nuckolls, J.L. & Wood, L. (2002). Future of Inertial Fusion Energy. Preprint UCRL-JC-149860, Sept. Livermore, CA: Lawrence Livermore National Laboratory.Google Scholar
Oliphant, M.L.E. & Rutherford, L. (1933). Experiments on the transmutation of elements by protons. Proc. Roy. Soc. London A 141, 259282.Google Scholar
Oliphant, M.L.E., Harteck, P. & Rutherford, L. (1934). Transmutation effects observed with heavy hydrogen. Proc. Roy. Soc. London A 144, 692714.Google Scholar
Pieruschka, P., Cicchitelli, L., Khoda-Bakhsh, R., Kuhn, E., Miley, G.H. & Hora, H. (1992). Volume ignition of inertial confinement fusion of deuterium-helium(3) and hydrogen-boron(11) clean fusion fuel. Laser Part. Beams 10, 145154.CrossRefGoogle Scholar
Ray, P.S. & Hora, H. (1976). On the range of alpha-particles in laser-produced superdense fusion plasmas. Nucl. Fusion 16, 535536.CrossRefGoogle Scholar
Ray, P.S. & Hora, H. (1977). Corrected penetration length of alphas for reheat calculations. Laser Interaction and Related Plasma Phenomena (Schwarz, H. and Hora, H., Eds.). New York: Plenum Press.Google Scholar
Roth, M., Brambrink, E., Audebert, B., Blazevic, A., Clarke, R., Cobble, J., Cobble, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Scheffel, C., Stening, R.J., Hora, H., Höpfl, R., Martinez-Val, J.M., Eliezer, S., Kasotakis, G., Piera, M. & Sarris, E. (1997). Analysis of the retrograde hydrogen boron fusion gains at inertial confinement fusion with volume ignition. Laser Part. Beams 15, 565574.CrossRefGoogle Scholar
Stening, R.J., Kasotakis, G., Khoda-Bakhsh, R., Pieruschka, P., Kuhn, E., Miley, G.H. & Hora, H. (1992). Volume ignition for inertial confinement fusion. In Laser Interaction and Related Plasma Phenomena (Hora, H. and Miley, G.H., Eds.). New York: Plenum Press.Google Scholar
Stepanek, J. (1981). Laser Interaction and Related Plasma Phenomena. (Schwarz, H., Hora, H., Lubin, M. and Yaacobi, B., Eds.). New York: Plenum Press.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition of high-gain with ultrapowerfull lasers. Phys. Plasmas 1, 16261634.Google Scholar
Tan, W. & Gu, M. (1985). Thermal Flux limitation and thermal conduction inhibition in laser plasma. Laser Part. Beams 3, 243250.Google Scholar
Ter-Avetisyan, S., Schnürer, M., Polster, R., Nickles, P.V. & Sanders, W. (2008). First demonstration of collimation and monochromatisation of a laser accelerated proton burst. Laser Part. Beams 26, 637642.CrossRefGoogle Scholar
Weaver, T., Zimmerman, G. & Wood, L. (1973). Exotic CTR fuels: Non-thermal effects and laser fusion applications. Report UCRL-74938. Livermore, CA: Lawrence Livermore Laboratory.Google Scholar
Yazdani, E., Cang, Y., Sadighi-Bonabi, R., Hora, H. & Osman, F. (2009). Layers from initial Rayleigh density profiles by directed nonlinear force driver plasma blocks for alternative fast ignition. Laser Part. Beams 27, 149156.CrossRefGoogle Scholar