Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T04:44:03.920Z Has data issue: false hasContentIssue false

The TARANIS laser: A multi-Terawatt system for laser-plasma investigations

Published online by Cambridge University Press:  30 July 2010

T. Dzelzainis
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
G. Nersisyan
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
D. Riley*
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
L. Romagnani
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
H. Ahmed
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
A. Bigongiari
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
M. Borghesi
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
D. Doria
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
B. Dromey
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
M. Makita
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
S. White
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
S. Kar
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
D. Marlow
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
B. Ramakrishna
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
G. Sarri
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
M. Zaka-Ul-Islam
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
M. Zepf
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
C.L.S. Lewis
Affiliation:
School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
*
Address correspondence and reprint requests to: D. Riley, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom. E-mail: [email protected]

Abstract

The multi-Terawatt laser system, terawatt apparatus for relativistic and nonlinear interdisciplinary science, has been recently installed in the Centre for Plasma Physics at the Queen's University of Belfast. The system will support a wide ranging science program, which will include laser-driven particle acceleration, X-ray lasers, and high energy density physics experiments. Here we present an overview of the laser system as well as the results of preliminary investigations on ion acceleration and X-ray lasers, mainly carried out as performance tests for the new apparatus. We also discuss some possible experiments that exploit the flexibility of the system in delivering pump-probe capability.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackermann, W., Asova, G., Ayvazyan, V., Azima, A., Baboi, N., Baehr, J., Balandin, V., Beutner, B., Brandt, A., Bolzmann, A., Brinkmann, R., Brovko, O.I., Castellano, M., Castro, P., Catani, L., Chiadroni, E., Choroba, S., Cianchi, A., Costello, J.T., Cubaynes, D., Dardis, J., Decking, W., Delsim-Hashemi, H., Delserieys, A., Di Pirro, G., Dohlus, M., Duesterer, S., Eckhardt, A., Edwards, H.T., Faatz, B., Feldhaus, J., Floettmann, K., Frisch, J., Froehlich, L., Garvey, T., Gensch, U., Gerth, Ch., Goerler, M., Golubeva, N., Grabosch, H.-J., Grecki, M., Grimm, O., Hacker, K., Hahn, U., Han, J.H., Honkavaara, K., Hott, T., Huening, M., Ivanisenko, Y., Jaeschke, E., Jalmuzna, W., Jezynski, T., Kammering, R., Katalev, V., Kavanagh, K., Kennedy, E.T., Khodyachykh, S., Klose, K., Kocharyan, V., Koerfer, M., Kollewe, M., Koprek, W., Korepanov, S., Kostin, D., Krassilnikov, M., Kube, G., Kuhlmann, M., Lewis, C.L.S., Lilje, L., Limberg, T., Lipka, D., Loehl, F., Luna, H., Luong, M., Martins, M., Meyer, M., Michelato, P., Miltchev, V., Moeller, W.D., Monaco, L., Mueller, W.F.O., Napieralski, O., Napoly, O., Nicolosi, P., Noelle, D., Nunez, T., Oppelt, A., Pagani, C., Paparella, R., Pchalek, N., Pedregosa-Gutierrez, J., Petersen, B., Petrosyan, B., Petrosyan, G., Petrosyan, L., Pflueger, J., Ploenjes, E., Poletto, L., Pozniak, K., Prat, E., Proch, D., Pucyk, P., Radcliffe, P., Redlin, H., Rehlich, K., Richter, M., Roehrs, M., Roensch, J., Romaniuk, R., Ross, M., Rossbach, J., Rybnikov, V., Sachwitz, M., Saldin, E.L., Sandner, W., Schlarb, H., Schmidt, B., Schmitz, M., Schmueser, P., Schneider, J.R., Schneidmiller, E.A., Schnepp, S., Schreiber, S., Seidel, M., Sertore, D., Shabunov, A.V., Simon, C., Simrock, S., Sombrowski, E., Sorokin, A.A., Spanknebel, P., Spesyvtsev, R., Staykov, L., Steffen, B., Stephan, F., Stulle, F., Thom, H., Tiedtke, K., Tischer, M., Toleikis, S., Treusch, R., Trines, D., Tsakov, I., Vogel, E., Weiland, T., Weise, H., Wellhoeffer, M., Wendt, M., Will, I., Winter, A., Wittenburg, K., Wurth, W., Yeates, P., Yurkov, M.V., Zagorodnov, I., Zapfe, K. (2007). Operation of a free-electron laser from the extreme ultraviolet to the water window Nat. Photonics 1, 336342.CrossRefGoogle Scholar
Baer, A., Eliezer, S., Henis, Z., Schwob, J.L. (1996). X-ray laser scheme driven by two laser pulses. Laser Part. Beams 14, 625630.CrossRefGoogle Scholar
Borghesi, M., Bigongiari, A., Kar, S., Macchi, A., Romagnani, L., Audebert, P., Fuchs, J., Toncian, T., Willi, O., Bulanov, S.V., Mackinnon, A.J. & Gauthier, J.C. (2008). Laser-driven proton acceleration: Source optimization and radiographic applications. Plasma Phys. Control. Fusion 50, 124040.CrossRefGoogle Scholar
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, I., Fell, B., Frackiewicz, A.J., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2005). Vulcan petawatt: Design, operation and interactions at 5 × 1020 Wcm−2. Laser Part. Beams 23, 8793.CrossRefGoogle Scholar
Drake, R.P. (2009). Perspectives on high-energy-density physics. Phys. Plasmas 16, 055501.CrossRefGoogle Scholar
Eidmann, K., Meyer-ter-Vehn, J., Schlegel, T. & Hüller, S. (2000). Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter. Phys. Rev. E 62, 12021214.CrossRefGoogle ScholarPubMed
Faenov, A.Ya, Inogamov, N.A.,Zhakhovskii, V.V., Khokhlov, V.A., Nishihara, K., Kato, Y., Tanaka, M., Pikuz, T.A., Kishimoto, M., Ishino, M., Nishikino, M., Nakamura, T., Fukuda, Y., Bulanov, S.V. & Kawachi, T. (2009). Low-threshold ablation of dielectrics irradiated by picosecond soft X-ray laser pulses. Appl. Phys. Lett. 94, 231107.CrossRefGoogle Scholar
Fuchs, J., Antici, P., D'Humieres, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C.A., Kaluza, M., Malka, V., Manclossi, M., Meyroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pepin, H. & Audebert, P. (2006). Laser-driven proton scaling laws and new paths towards energy increase, Nat. Phys. 2, 4854.CrossRefGoogle Scholar
Henke, B.L., Gullikson, E.M. & Davis, J.C. (1993). X-ray Interactions-Photoabsorption, Scattering, Transmission and Reflection at E = 50–30,000 eV, Z = 1–92. Atomic Data and Nuclear Data Tables 54, 181342.CrossRefGoogle Scholar
International Commission on Radiation Units and Measurements. (1993). Stopping Powers and Ranges for Protons and Alpha Particles. ICRU Report 49.Google Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.CrossRefGoogle Scholar
Kazamias, S., Cassou, K., Ros, D., Plé, F., Jamelot, G., Klisnick, A., Lundh, O., Lindau, F., Persson, A., Wahlström, C.-G., De Rossi, S., Joyeux, D., Zielbauer, B., Ursescu, D. & Kühl, T. (2008). Characterization of a transient collisional Ni-like molybdenum soft-X-ray laser pumped in grazing incidence. Phys. Rev. A 77, 033812.CrossRefGoogle Scholar
Keenan, R., Dunn, J., Patel, P.K., Price, D.F., Smith, R.F. & Shlyapstev, V.N. (2005). High-repetition-rate grazing-incidence pumped X-ray laser operating at 18.9 nm. Phys. Rev. Lett. 94, 103901.CrossRefGoogle ScholarPubMed
King, R.E., Pert, G.J., McCabe, S.P., Simms, P., MacPhee, A.G., Lewis, C.L.S., Keenan, R., O'Rourke, R.M.N., Tallents, G.J., Pestehe, S.J., Strati, F., Neely, D. & Allot, R. (2001). Saturated X-ray lasers at 196Å and 73Å pumped by picosecond, travelling wave excitation. Phys. Rev. A 64, 053810/1–12.CrossRefGoogle Scholar
Kuroda, H., Suzuki, M., Ganeev, R., Zhang, J., Baba, M., Ozaki, T., Wei, Z.Y. & Zhang, H. (2005). Advanced 20 TW Ti:S laser system for X-ray laser and coherent XUV generation irradiated by ultra-high intensities. Laser Part. Beams 23, 183186.CrossRefGoogle Scholar
Lee, R.W., Baldis, H.A., Cauble, R.C., Landen, O.L., Wark, J.S., Ng, A., Rose, S.J., Lewis, C., Riley, D., Gauthier, J.C. & Audebert, P. (2002). Plasma-based studies with intense X-ray and particle beam sources. Laser Part. Beams 20, 527536.CrossRefGoogle Scholar
Linford, G.J., Peressini, E.R., Sooy, W.R. & Spaeth, M.L. (1974). Very long lasers. Appl. Opt. 13, 7990.Google ScholarPubMed
Luther, B.M., Wang, Y., Larotonda, M.A., Alessi, D., Berrill, M., Marconi, M.C., Rocca, J.J. & Shlyaptsev, V.N. (2005). Saturated high-repetition-rate 18.9nm tabletop laser in nickel-like molybdenum. Opt. Lett. 30 165167.CrossRefGoogle Scholar
Mckenna, P., Carroll, D.C., Lundh, O., Nuernberg, F., Markey, K., Bandyopadhyay, S., Batani, D., Evans, R.G., Jafer, R., Kar, S., Neely, D., Pepler, D., Quinn, M.N., Redaelli, R., Roth, M., Wahlstrom, C.-G., Yuan, X.H. & Zepf, M. (2008). Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets. Laser Part. Beams 26, 591596.CrossRefGoogle Scholar
Nagler, B., Zastrau, U., Fäustlin, R.R., Vinko, S.M., Whitcher, T., Nelson, A.J., Sobierajski, R., Krzywinski, J., Chalupsky, J., Abreu, E., Bajt, S., Bornath, T., Burian, T., Chapman, H., Cihelka, J., Döppner, T., Düsterer, S., Dzelzainis, T., Fajardo, M., Förster, E., Fortmann, C., Galtier, E., Glenzer, S.H., Gode, S., Gregori, G., Hajkova, V., Heimann, P., Juha, L., Jurek, M., Khattak, F.Y., Khorsand, A.R., Klinger, D., Kozlova, M., Laarmann, T., Lee, H.J., Lee, R.W., Meiwes-Broer, K-H., Mercere, P., Murphy, W.J., Przystawik, A., Redmer, R., Reinholz, H., Riley, D., Ropke, G., Rosmej, F., Saksl, K., Schott, R., Thiele, R., Tiggesbäumker, J., Toleikis, S., Tschentscher, T., Uschmann, I., Vollmer, H.J. & Wark, J.S. (2009). Turning solid aluminium transparent by intense soft X-ray photoionization Nat. Phys. 5, 693696.Google Scholar
National Research Council, Committee on High Energy Density Plasma Physics, Plasma Science. (2003). High-Energy-Density Physics: The X-Games of Contemporary Science. Washington, D.C.: National Research Council, Committee on High Energy Density Plasma Physics, Plasma Science.Google Scholar
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.J., Kuehl, T., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser Part. Beams 23, 385389.CrossRefGoogle Scholar
Newman, B.E. (1991). XUV free-electron laser-based projection lithography systems. Proc. SPIE 1343, 214.Google Scholar
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004.CrossRefGoogle ScholarPubMed
Pert, G.J. (1994). Output characteristics of amplified-stimulated-emission lasers. J. Opt. Soc. Am. B 11, 14251435.CrossRefGoogle Scholar
Roth, M., Alber, I., Bagnoud, V., Brown, C., Clarke, R., Daido, H., Fernandez, J., Flippo, K., Gaillard, S., Gauthier, C., Glenzer, S., Gregori, G., Günther, M., Harres, K., Heathcote, R., Kritcher, A., Kugland, N., LePape, S., Li, B., Makita, M., Mithen, J., Niemann, C., Nürnberg, F., Offermann, D., Otten, A., Pelka, A., Riley, D., Schaumann, D., Schollmeier, M., Schütrumpf, J., Tampo, M., Tauschwitz, A. & Tauschwitz, An. (2009). Proton acceleration experiments and warm dense matter research using high power lasers. Plasma Phys. Contr. Fusion 51, 124039.CrossRefGoogle Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, NA. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Semkat, D., Redmer, R. & Bornath, Th. (2006). Collisional absorption in aluminium. Phys. Rev. E 73, 066406.CrossRefGoogle Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.CrossRefGoogle ScholarPubMed
Tommasini, R. & Fill, E.E. (2000). Generalized Linford formula. J. Opt. Soc. Am. B 17, 16651670.CrossRefGoogle Scholar
Zvorykin, V.D., Didenko, N.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritskii, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Seleznev, L.V., Sinitsyn, D.V., Tenyakov, S.Y., Ustinovskii, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti : Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams 25, 435451.CrossRefGoogle Scholar