Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T03:21:18.240Z Has data issue: false hasContentIssue false

Stochastic heating in ultra high intensity laser-plasma interaction

Published online by Cambridge University Press:  28 February 2007

A. BOURDIER
Affiliation:
Département de physique Théorique et Appliquée, CEA/DAM Ile-de-France, Bruyères-le-Châtel, France
D. PATIN
Affiliation:
UMR 8578, Université Paris-Sud, Orsay cedex, France
E. LEFEBVRE
Affiliation:
Département de physique Théorique et Appliquée, CEA/DAM Ile-de-France, Bruyères-le-Châtel, France

Abstract

Stochastic instabilities are studied considering the motion of one particle in a very high intensity wave propagating along a constant homogeneous magnetic field, and in a high intensity wave propagating in a nonmagnetized medium perturbed by one or two low intensity traveling waves. Resonances are identified and conditions for resonance overlap are studied. The part of chaos in the electron acceleration is analyzed. PIC code simulation results confirm the stochastic heating.

Type
Research Article
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, V.I. (1988). Dynamical Systems III. Berlin: Springer-Verlag.
Bouquet, S. & Bourdier, A. (1998). Notion of inerrability for time-dependent Hamiltonian systems: Illustrations from the relativistic motion of a charged particle. Phys. Rev. E 57, 12731283.Google Scholar
Bourdier, A. & Gond, S. (2000). Dynamics of a charged particle in a circularly polarized traveling electromagnetic wave. Phys. Rev. E 62, 41894206.Google Scholar
Bourdier, A. & Gond, S. (2001). Dynamics of a charged particle in a linearly polarized traveling electromagnetic wave. Phys. Rev. E 63, 036609–1/9.Google Scholar
Bourdier, A. & Michel-Lours, L. (1994). Identifying chaotic electron trajectories in a helical-wiggler free-electron laser. Phys. Rev. E 49, 33533359.Google Scholar
Bourdier, A., Patin, D. & Lefebvre, E. (2005). Stochastic heating in ultra high intensity laser-plasma interaction. Phys. D 206, 131.Google Scholar
Bourdier, A., Valentini, M. & Valat, J. (1996). Dynamics of a relativistic charged particle in a constant homogeneous magnetic field and a transverse homogeneous rotating electric field. Phys. Rev. E 62, 5681569.Google Scholar
Chirikov, B. (1979). A universal instability of many-dimensional oscillator systems. Phys. Reports 52, 263379.Google Scholar
Davydovski, V.Ya. (1963). Possibility of resonance acceleration of charged particles by electromagnetic waves in a constant magnetic field. JETP 16, 629630.Google Scholar
Jackson, J.D. (1975). Classical Electrodynamics, 2nd ed. New-York: Wiley.
Kanapathipillai, M. (2006). Nonlinear absorption of ultra short laser pulses by clusters. Laser Part. Beams 24, 914.Google Scholar
Kwon, D. H. & Lee, H.W. (1999). Chaos and reconnection in relativistic cyclotron motion in an elliptically polarized electric field Phys. Rev E 60, 38963904.Google Scholar
Landau, L.D. & Lifshitz, E.M. (1975). The Classical Theory of Fields, 4th ed. Oxford: Pergamon.
Lefebvre, E., Cochet, N., Fritzler, S., Malka, V., Aléonard, M.-M., Chemin, J.-F., Darbon, S., Disdier, L., Faure, J., Fedotoff, A., Landoas, O., Malka, G., Méot, V., Morel, P., Rabec Le Gloahec, M., Rouyer, A., Rubbelynck, Ch., Tikhonchuk, V., Wrobel, R., Audebert, P. & Rousseaux, C. (2003). Electron and photon production from relativistic laser-plasma interactions. Nucl. Fusion 43, 629633.Google Scholar
Lichtenberg, A.J. & Liebermann, M.A. (1983). Regular and Stochastic Motion. New York: Springer-Verlag.
Mulser, P., Kanapathipillai, M. & Hoffmann, D.H.H. (2005). Two very efficient nonlinear laser absorption mechanisms in clusters. Phys. Rev. Lett. 95, 103401-4.Google Scholar
Ott, E. (1993). Chaos in Dynamical Systems. Cambridge: University Press.
Patin, D., Bourdier, A. & Lefebvre, E. (2005a). Stochastic heating in ultra high intensity laser-plasma interaction. Laser Part. Beams 23, 599599.Google Scholar
Patin, D., Bourdier, A. & Lefebvre, E. (2005b). Stochastic heating in ultra high intensity laser-plasma interaction. Laser Part. Beams 23, 297302.Google Scholar
Patin, D., Lefebvre, E., Bourdier, A. & D'Humières, E. (2006). Stochastic heating in ultra high intensity laser-plasma interaction: Theory and PIC code simulations. Laser Part. Beams 24, 223230.Google Scholar
Rasband, S.N. (1983). Dynamics. New York: John Wiley & Sons.
Rax, J.M. (1992). Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high-intensity laser waves. Phys. Fluids B 4, 39623972.Google Scholar
Roberts, C.S. & Buchsbaum, S.J. (1964). Motion of a charged particle in a constant magnetic field and a transverse electromagnetic wave propagating along the field. Phys. Rev. 135, A381A389.Google Scholar
Sheng, Z.-M., Mima, K., Sentoku, Y., Jovanovic, M.S., Taguchi, T., Zhang, J. & Meyer-ter-Vehn, J. (2002). Stochastic heating and acceleration of electrons in colliding laser fields in plasma. Phys. Rev. Lett, 88, 055004-1, 1/4.Google Scholar
Sheng, Z.-M., Mima, K., Zhang, J. & Meyer-ter-Vehn, J. (2004). Efficient acceleration of electrons with counter propagating intense laser pulses in vacuum and underdense plasma. Phys. Rev. E 69, 016407.Google Scholar
Tabor, M. (1989). Chaos and Inerrability in Nonlinear Dynamics. New York: John Wiley & Sons.
Tajima, T., Kishimoto, Y. & Masaki, T. (2001). Cluster fusion. Phys. Scripta T89, 4548.Google Scholar
Van Der Weele, J.P., Capel, H.W., Valkering T.P., &Post, T. (1998). The squeeze effect in non-integrable Hamiltonian systems. Physica 147A, 499532.Google Scholar
Walker, G.H. & Ford, J. (1969). Amplitude instability and ergodic behavior fot conservative nonlinear oscillator systems. Phys. Rev. 188, 416431.Google Scholar
Winkles, B.B. & Eldridge, O. (1972). Self-consistent electromagnetic waves in relativistic vlasov plasmas. Phys. Fluids 15, 17901800.Google Scholar