Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T23:33:58.608Z Has data issue: false hasContentIssue false

Stochastic heating in ultra high intensity laser-plasma interaction

Published online by Cambridge University Press:  30 August 2005

D. PATIN
Affiliation:
Commissariat à l'Energie Atomique, DAM-IIe de France, Département de Physique Théorique et Appliquée, Bruyères-le-Châtel, France
A. BOURDIER
Affiliation:
Commissariat à l'Energie Atomique, DAM-IIe de France, Département de Physique Théorique et Appliquée, Bruyères-le-Châtel, France
E. LEFEBVRE
Affiliation:
Commissariat à l'Energie Atomique, DAM-IIe de France, Département de Physique Théorique et Appliquée, Bruyères-le-Châtel, France

Abstract

Stochastic instabilities are studied considering the motion of one particle in a very high intensity wave perturbed by one or two low intensity traveling waves. Resonances are identified and conditions for resonance overlap are studied. PIC code simulation results confirm the stochastic heating.This paper was presented at the 28th ECLIM conference in Rome, Italy.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chirikov, B. (1979). A universal instability of many-dimensional oscillator systems. Phys. Reports 52, 263379.CrossRefGoogle Scholar
Jackson, J.D. (1975). Classical Electrodynamics, 2nd ed. New York: Wiley.
Landau, L.D. & Lifshitz, E.M. (1975). The Classical Theory of Fields, 4th ed. Oxford: Pergamon.
Lefebvre, E., et al. (2003). Electron and photon production from relativistic laser-plasma interactions. Nucl. Fusion 43, 629633.CrossRefGoogle Scholar
Lichtenberg, A.J. & Liebermann, M.A. (1983). Regular and Stochastic Motion. New York: Springer-Verlag.CrossRef
Nikishov, A.I. & Ritus, V.I. (1964). Quantum processes in the field of a plane electromagnetic wave and in a constant field. JETP 19, 529541.Google Scholar
Pommier, L. & Lefebvre, E. (2003). Simulations of energetic proton emission in laser-plasma interaction. Laser Part. Beams 21, 573581.Google Scholar
Rax, J.M. (1992). Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high-intensity laser waves. Phys. Fluids B 4, 39623972.CrossRefGoogle Scholar
Ritus, V.I. (1985). Some properties of the function An(sαβ). J. Sov. Laser Res. 6, 609610.Google Scholar
Sheng, Z.-M., Mima, K., Sentoku, Y., Jovanovic, M.S., Taguchi, T., Zhang, J. & Meyer-ter-Vehn, J. (2002). Stochastic heating and acceleration of electrons in colliding laser fields in plasma. Phys. Rev. Lett. 88, 055004, 14.
Sheng, Z.-M., Mima, K., Zhang, J. & Meyer-ter-Vehn, J. (2004). Efficient acceleration of electrons with counter-propagating intense laser pulses in vacuum and underdense plasma. Phys. Rev. E 69, 016407, 111.
Tajima, T., Kishimoto, Y. & Masaki, T. (2001). Cluster fusion. Phys. Scripta T89, 4548.Google Scholar