Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T06:19:33.187Z Has data issue: false hasContentIssue false

The splitted beam profile of laser beam in the interaction of intense lasers with overdense plasmas

Published online by Cambridge University Press:  22 March 2011

Xiongping Xia
Affiliation:
Department of Physics, HuazhongUniversity of Science and Technology, Wuhan, China
Zebin Cai
Affiliation:
Department of Basis, Air Force Radar Academy, Wuhan, China
Lin Yi*
Affiliation:
Department of Physics, HuazhongUniversity of Science and Technology, Wuhan, China
*
Address correspondence and reprint requests to: Lin Yi, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China. E-mail: [email protected]

Abstract

In this paper, the interaction of intense lasers with overdense plasmas is investigated. Based on the modified nonlinear wave equation describing the interaction of intense laser and overdense plasmas in nonparaxial region, due to the influence of off-axis components a2 and a4 in nonparaxial region, we first find the three-splitted laser beam intensity profile, besides, discuss detailed the forming mathematic and some possible physical conditions of the single highly self-focusing beam profile, two-splitted beam, and three-splitted beam profile. In addition, we also investigate the influence of the parameters βE02 and ρ2 on splitted beam profiles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antici, P., Fuchs, J., d'Humières, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C.A., Gaillard, S., Romagnani, L., Sentoku, Y., Toncian, T., Willi, O., Audebert, P. & Pépin, H. (2007). Energetic protons generated by ultrahigh contrast laser pulses interacting with ultrathin targets. Phys. Plasmas 14, 030701.CrossRefGoogle Scholar
Asthana, M.V., Rathore, B. & Varshney, D. (2009). Effect of self-generated axial magnetic field and on propagation of intense laser radiation in plasmas. J. Mod. Opt. 56, 16131620CrossRefGoogle Scholar
Badiei, S., Andersson, P.U. & Holmlid, L. (2010). Laser-driven nuclear fusion D plus D in ultra-dense deuterium: MeV particles formed without ignition. Laser Part. Beams 28, 313317.CrossRefGoogle Scholar
Batra, K., Mitra, S., Subbarao, D., Sharma, R.P. & Uma, R. (2005). Graphical user interface based computer simulation of self-similar modes of a paraxial slow self-focusing laser beam for saturating plasma nonlinearities. Phys. Plasmas 12, 013106.CrossRefGoogle Scholar
Bergé, L. (1997). Self-focusing dynamics of nonlinear waves in media with parabolic-type inhomogeneities. Phys. Plasmas 4, 12271237.Google Scholar
Bharuthram, R. & Parashar, J. (1999). Cross-focusing of two laser beams in a plasma. Phys. Rev. E 60, 32533256.CrossRefGoogle ScholarPubMed
Borghesi, M., Campbell, D.H., Schiavi, A., Haines, M.G., Willi, O., MacKinnon, A.J., Patel, P., Gizzi, L.A., Galimberti, M., Clarke, R.J., Pegoraro, F., Ruhl, H. & Bulanov, S. (2002). Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Phys. Plasmas 9, 22142220.Google Scholar
Ceccherini, P., Boscolo, A., Poletto, L., Tondello, G., Villoresi, P., Altucci, C., Bruzzese, R., De Lisio, C., Nisoli, M., Stagira, S., De Silvestri, S. & Svelto, O. (2000). Gas medium ionization and harmonic wavelength tunability in high-order harmonic generation with ultrashort laser pulses. Laser Part. Beams 18, 477482.CrossRefGoogle Scholar
Cohen, B.I., Lasinski, B.F., Langdon, A.B. & Cummings, J.C. (1991). Dynamics of ponderomotive self-focusing in plasmas. Phys. Fluids B 3, 766775.CrossRefGoogle Scholar
Esarey, E., Schroeder, C.B., Shadwick, B.A., Wurtele, J.S. & Leemans, W.P. (2000). Nonlinear theory of nonparaxial laser pulse propagation in plasma channels. Phys. Rev. Lett. 84, 30813084.CrossRefGoogle ScholarPubMed
Gupta, M.K., Sharma, R.P. & Mahmoud, S.T. (2007). Generation of plasma wave and third harmonic generation at ultra relativistic laser power. Laser Part. Beams 25, 211218.Google Scholar
Gupta, R., Sharma, P., Chauhan, P.K., Rafat, M. & Sharma, R.P. (2009). Effect of ultrarelativistic laser beam filamentation on third harmonic spectrum. Phys. Plasmas 16, 043101.CrossRefGoogle Scholar
Hafizi, B., Roberson, C.W. & Sprangle, P. (2000). Ultrashort free-electron laser pulse. Phys. Rev. E 61, 57795783.Google Scholar
Jha, P., Wadhwani, N., Upadhyaya, A.K. & Raj, G. (2004). Self-focusing and channel-coupling effects on short laser pulses propagating in a plasma channel. Phys. Plasmas 11, 32593263.CrossRefGoogle Scholar
Kumar, N. & Tripathi, V.K. (2006). Non-paraxial theory of self-defocusing/focusing of a laser pulse in amultiple-ionizing gas. Appl. Physics B: Laser & Opt. 82, 5358.Google Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Liu, M.P., Wu, H.C., Xie, B.S. & Yu, M.Y. (2008). Electron acceleration in vacuum by subcycle laser pulse. Phys. Plasmas 15, 023108.Google Scholar
Mackinnon, A.J., Sentoku, Y., Patel, P.K., Price, D.W., Hatchett, S.P., Key, M.H., Andersen, C., Snavely, R.A. & Freeman, R.R. (2002). Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett. 88, 215006.CrossRefGoogle ScholarPubMed
Monteiro, P.B., Maia Neto, P.A. & Nussenzveig, M.H. (2009). Angular momentum of focused beams: Beyond the paraxial approximation. Phys. Rev. A 79, 033830.CrossRefGoogle Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.Google Scholar
Mulser, P., Kanapathipillai, M. & Hoffmann, D.H.H. (2005). two very efficient nonlinear laser absorption mechanisms in clusters. Phys. Rev. Lett. 95, 103401.Google Scholar
Naumova, N., Schlegel, T., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Hole boring in a DT pellet and fast-ion ignition with ultraintense laser pulses. Phys. Rev. Lett. 102, 025002.CrossRefGoogle Scholar
Ritchie, B. (1994). Relativistic self-focusing and channel formation in laser-plasma interactions. Phys. Rev. E 50, R687R689.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.Google Scholar
Sadighi-Bonabi, R., Hora, H., Riazi, Z., Yazdani, E. & Sadighi, S.K. (2010). Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition. Laser Part. Beams 28, 101107.CrossRefGoogle Scholar
Sharma, Prerana & Sharma, R.P. (2009). Suppression of stimulated Raman scattering due to localization of electron plasma wave in laser beam filaments. Phys. Plasmas 16, 032301.CrossRefGoogle Scholar
Sharma, R.P. & Chauhan, P.K. (2008). Nonparaxial theory of cross-focusing of two laser beams and its effects on plasma wave excitation and particle acceleration: Relativistic case. Phys. Plasmas 15, 063103.CrossRefGoogle Scholar
Sharma, R.P., Sharma, P. & Chauhan, P.K. (2007). Effect of laser beam filamentation on plasma wave localization and electron heating. Phys. Plasmas 14, 103112.Google Scholar
Shorokhov, O., Pukhov, A. & Kostyukov, I. (2003). Self-compression of laser pulses in plasma. Phys. Rev. Lett. 91, 265002.Google Scholar
Singh, A., Aggarwal, M. & Gill, T.S. (2009). Dynamics of Gaussian spikes on Gaussian laser beam in relativistic plasma. Laser Part. Beams 27, 587593.CrossRefGoogle Scholar
Sodha, M.S. & Faisal, M. (2008). Propagation of high power electromagnetic beams in overdense plasmas: Higher order paraxial theory. Phys. Plasmas 15, 033102.CrossRefGoogle Scholar
Sodha, M.S., Prasad, S. & Tripathi, V.K. (1975), Nonstationary self-focusing of a Gaussian pulse in a plasma. J. Appl. Phys. 46, 637642.Google Scholar
Subbarao, D., Batra, K. & Uma, R. (2003). Paraxial theory of slow self-focusing. Phys. Rev. E 68, 066403.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Young, P.E., Baldis, H.A., Drake, R.P., Campbell, E.M. & Estrabrook, K.G. (1988). Direct evidence of ponderomotive filamentation in a laser-produced plasma. Phys. Rev. Lett. 61, 23362339.Google Scholar