Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T10:14:19.118Z Has data issue: false hasContentIssue false

Simulation of shock waves in flyer plate impact experiments

Published online by Cambridge University Press:  14 October 2010

S. Neff*
Affiliation:
Nevada Terawatt Facility, University of Nevada, Reno
R. Presura
Affiliation:
Nevada Terawatt Facility, University of Nevada, Reno
*
Address correspondence and reprint requests to: Stephen Neff, Institute for Nuclear Physics, Technische Universität Darmstadt, Darmstadt, Germany. E-mail: [email protected]

Abstract

In this paper we present a newly developed one-dimensional hydrodynamic simulation code and use it to determine the shock evolution in flyer plate impact experiments. The code is Lagrangian with artificial viscosity and uses shock Hugoniot data in its equation-of-state calculations instead of SESAME data tables. First shock calculations for transparent targets show a good agreement with theoretical predictions, making the code suitable for designing future flyer impact experiments at the Nevada Terawatt Facility.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chuvatin, A.S., Rudakov, L.I., Weber, B.V., Bayol, & Cadiergues, F.R. (2005). Current multiplier to improve generator-to-load coupling for a pulsed-power generator (2005). Rev. Sci. Inst. 76, 063501.CrossRefGoogle Scholar
Davison, L. (2008). Fundamentals of Shock Wave Propagation in Solids, Springer.Google Scholar
Drake, R.P. (2002). Design of flyer-plate-driven compressible turbulent mix experiments using Z. Phys. Plasmas 9, 3545.CrossRefGoogle Scholar
Drumheller, D.S. (1998). Introduction to Wave Propagation in Nonlinear Fluids and Solids, Cambridge University Press.CrossRefGoogle Scholar
Knudson, M.D., Desjarlais, M.P. & Dolan, D.H. (2008). Shock-Wave Exploration of the High-Pressure Phases of Carbon. Science 322, 1822.CrossRefGoogle ScholarPubMed
Marsh, S.P. (1980). LASL Shock Hugoniot Data, University of California Press.Google Scholar
Neff, S., Martinez, D., Plechaty, C., Stein, S. & Presura, R. (2010). Magnetic acceleration of aluminum foils for shock wave experiments. High Energy Density Physics 6, 242245.CrossRefGoogle Scholar
Neff, S., Ford, J., Wright, S., Martinez, D., Plechaty, C. & Presura, R. (2009). Magnetically accelerated foils for shock wave experiments. Astrophys Space Sci 322, 189.CrossRefGoogle Scholar
von Neumann, J. & Richtmyer, R.D. (1950). A method for the numerical calculation of hydrodynamic shocks, JAP 21, 232.Google Scholar
Philippe, F., Canaud, B., Fortin, X., Garaude, F. & Jourdren, H. (2004). Effects of microstructure on shock propagation in foams. Laser & Particle Beams 22, 171.CrossRefGoogle Scholar
Remington, B.A., Drake, R.P. & Ryutov, D.D. (2006). Experimental astrophysics with high power lasers and z pinches. Rev. Mod. Phys. 78, 755.CrossRefGoogle Scholar
Zel'dovich, Y.B. & Raizer, Y.P. (2002). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover.Google Scholar