Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T00:32:19.177Z Has data issue: false hasContentIssue false

Short-wavelength experiments on laser pulse interaction with extended pre-plasma at the PALS-installation

Published online by Cambridge University Press:  18 December 2015

T. Pisarczyk*
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
S.Yu. Gus'kov
Affiliation:
P.N. Lebedev Physical Institute of RAS, Moscow, Russian Federation National Research Nuclear University (Moscow Eng. Phys. Inst.), Moscow, Russian Federation
O. Renner
Affiliation:
Institute of Physics ASCR, Prague, Czech Republic
R. Dudzak
Affiliation:
Institute of Physics ASCR, Prague, Czech Republic Institute of Plasma Physics ASCR, Prague, Czech Republic
J. Dostal
Affiliation:
Institute of Physics ASCR, Prague, Czech Republic Institute of Plasma Physics ASCR, Prague, Czech Republic
N.N. Demchenko
Affiliation:
P.N. Lebedev Physical Institute of RAS, Moscow, Russian Federation
M. Smid
Affiliation:
Institute of Physics ASCR, Prague, Czech Republic
T. Chodukowski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
Z. Kalinowska
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
M. Rosinski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
P. Parys
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
J. Badziak
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
D. Batani
Affiliation:
Université Bordeaux, CNRS, CEA, CELIA, Talence, France
S. Borodziuk
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
L. A. Gizzi
Affiliation:
Intense Laser Irradiation Laboratory-National Institute of Optics CNR, Pisa, Italy
E. Krousky
Affiliation:
Institute of Physics ASCR, Prague, Czech Republic Institute of Plasma Physics ASCR, Prague, Czech Republic
Y. Maheut
Affiliation:
Université Bordeaux, CNRS, CEA, CELIA, Talence, France
G. Cristoforetti
Affiliation:
Intense Laser Irradiation Laboratory-National Institute of Optics CNR, Pisa, Italy
L. Antonelli
Affiliation:
Université Bordeaux, CNRS, CEA, CELIA, Talence, France
P. Koester
Affiliation:
Intense Laser Irradiation Laboratory-National Institute of Optics CNR, Pisa, Italy
F. Baffigi
Affiliation:
Intense Laser Irradiation Laboratory-National Institute of Optics CNR, Pisa, Italy
J. Ullschmied
Affiliation:
Institute of Physics ASCR, Prague, Czech Republic Institute of Plasma Physics ASCR, Prague, Czech Republic
J. Hrebicek
Affiliation:
Institute of Physics ASCR, Prague, Czech Republic Institute of Plasma Physics ASCR, Prague, Czech Republic
T. Medrik
Affiliation:
Institute of Physics ASCR, Prague, Czech Republic Institute of Plasma Physics ASCR, Prague, Czech Republic
M. Pfeifer
Affiliation:
Institute of Physics ASCR, Prague, Czech Republic Institute of Plasma Physics ASCR, Prague, Czech Republic
J. Skala
Affiliation:
Institute of Physics ASCR, Prague, Czech Republic Institute of Plasma Physics ASCR, Prague, Czech Republic
P. Pisarczyk
Affiliation:
Warsaw University of Technology, Institute of Computer Sciences, Warsaw, Poland
*
Address correspondence and reprint requests to: T. Pisarczyk, Institute of Plasma Physics and Laser Microfusion, 23 Hery St.; 01-498 Warsaw, Poland. E-mail: [email protected]

Abstract

The paper is a continuation of research carried out at Prague Asterix Laser System (PALS) related to the shock ignition (SI) approach in inertial fusion, which was carried out with use of 1ω main laser beam as the main beam generating a shock wave. Two-layer targets were used, consisting of Cu massive planar target coated with a thin polyethylene layer, which, in the case of two-beam irradiation geometry, simulate conditions related to the SI scenario. The investigations presented in this paper are related to the use of 3ω to create ablation pressure for high-power shock wave generation. The interferometric studies of the ablative plasma expansion, complemented by measurements of crater volumes and Kα emission, clearly demonstrate the effect of changing the incident laser intensity due to changing the focal radius on efficiency of laser energy transfer to a shock wave and fast electron emission. The efficiency of the energy transfer increases with the radius of the focused laser beam. The pre-plasma does not significantly change the character of this effect. However, it unambiguously results in the increasing temperature of fast electrons, the total energy of which remains very small (<0.1% of the laser energy). This study shows that the optimal radius from the point of view of 3ω radiation energy transfer to the shock wave is the maximal one used in these experiments and equal to 200 µm that corresponds to the minimal effect of two-dimensional (2D)-expansion. Such a result is typical for the ablation process determined by electron conductivity energy transfer under the conditions of one-dimensional or 2D matter expansion without any appreciable effect due to energy transfer by fast electrons. The 2D simulations based on application of the ALANT-HE code and an analytical model that includes generation and transport of hot electrons has been used to support of experimental data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J., Antonelli, L., Baffigi, F., Batani, D., Chodukowski, T., Cristoforetti, G., Dudzak, R., Gizzi, L.A., Folpini, G., Hall, F., Kalinowska, Z., Koester, P., Krousky, E., Kucharik, M., Labate, L., Liska, R., Malka, G., Maheut, Y., Parys, P., Pfeifer, M., Pisarczyk, T., Renner, O., Rosiński, M., Ryc, L., Skala, J., Smid, M., Spindloe, C., Ullschmied, J. & Zaraś-Szydłowska, A. (2015). Studies of ablated plasma and shocks produced in a planar target by a sub-nanosecond laser pulse of intensity relevant to shock ignition. Laser Part. Beams 33, 561.CrossRefGoogle Scholar
Batani, D., Antonelli, L., Atzeni, S., Badziak, J., Baffigi, F., Chodukowski, T., Consoli, F., Cristoforetti, G., Deangelis, R., Dudzak, R., Folpini, G., Giuffrida, L., Gizzi, L.A., Kalinowska, Z., Koester, P., Krousky, E., Krus, M., Labate, L., Levato, T., Maheut, Y., Malka, G., Margarone, D., Marocchino, A., Nejdl, J., Nicolai, P., O'Dell, T., Pisarczyk, T., Renner, O., Rhee, Y.J., Ribeyre, X., Richetta, M., Rosinski, M., Sawicka, M., Schiavi, A., Skala, J., Smid, M., Spindloe, C., Ullschmied, J., Velyhan, A. & Vinci, T. (2014 a). Generation of high pressure shocks relevant to the shock-ignition intensity regime. Phys. Plasmas 21, 032710.CrossRefGoogle Scholar
Batani, D., Baton, S., Casner, A., Depierreux, S., Hohenberger, M., Klimo, O., Koenig, M., Labaune, C., Ribeyre, X., Rousseaux, C., Schurtz, G., Theobald, W. & Tikhonchuk, V.T. (2014 b). Physical issues in shock ignition. Nucl. Fusion 54, 054009.Google Scholar
Batani, D., Koenig, M., Baton, S., Perez, F., Gizzi, L.A., Koester, P., Labate, L., Honrubia, J., Antonelli, L., Morace, A., Volpe, L., Santos, J., Schurtz, G., Hulin, S., Ribeyre, X., Fourment, C., Nicolai, P., Vauzour, B., Gremillet, L., Nazarov, W., Pasley, J., Richetta, M., Lancaster, K., Spindloe, CH., Tolley, M., Neely, D., Kozlová, M., Nejdl, J., Rus, B., Wolowski, J., Badziak, J. & Dorchies, F. (2011). The HiPER project for inertial confinement fusion and some experimental results on advanced ignition schemes. Plasma Phys. Controll. Fusion 53, 124041.Google Scholar
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001.Google Scholar
Gus'kov, S.YU., Borodziuk, S., Kalal, M., Kasperczuk, A., Kralikova, B., Krousky, E., Limpouch, J., Masek, K., Pisarczyk, P., Pisarczyk, T., Pfeifer, M., Rohlena, K., Skala, J. & Ullschmied, J. (2004). Generation of shock waves and formation of crater in a solid material irradiated by a short laser pulse. Quantum Electron. 34, 989.Google Scholar
Gus'kov, S.YU., Demchenko, N.N., Kasperczuk, A., Pisarczyk, T., Kalinowska, Z., Chodukowski, T., Renenr, O., Smid, M., Krousky, E., Pfeifer, M., Skala, J., Ullschmied, J. & Pisarczyk, P. (2014). Laser-driven ablation through fast electrons in PALS-experiment at the laser radiation intensity of 1–50 PW/cm2. Laser Part. Beams 32, 177915.CrossRefGoogle Scholar
Gus'kov, S.YU., Kasperczuk, A., Pisarczyk, T., Borodziuk, B., Kalal, M., Limpouch, J., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2006). Efficiency of ablative loading of material upon the fast-electron transfer of absorbed laser energy. Quantum Electron. 36, 429.Google Scholar
Jacquemot, S., Amiranoff, F., Baton, S.D., Chanteloup, J.C., Labaune, C., Koenig, M., Michel, D.T., Perez, F., Schlenvoigt, H.P., Canaud, B., Cherfils Clérouin, C., Debras, G., Depierreux, S., Ebrardt, J., Juraszek, D., Lafitte, S., Loiseau, P., Miquel, J.L., Philippe, F., Rousseaux, C., Blanchot, N., Edwards, C.B., Norreys, P., Atzeni, S., Schiavi, A., Breil, J., Feugeas, J.L., Hallo, L., Lafon, M., Ribeyre, X., Santos, J.J., Schurtz, G., Tikhonchuk, V., Debayle, A. & Honrubia, J.J. (2011). Studying ignition schemes on European laser facilities. Nucl. Fusion 51, 094025.Google Scholar
Klimo, O., Tikhonchuk, V.T., Rebeyre, X., Schurtz, G., Riconda, C., Weber, S. & Limpouch, J. (2011). Laser plasma interaction studies in the context of shock ignition – transition from collisional to collisionless absorption. Phys. Plasmas 18, 082709.CrossRefGoogle Scholar
Koester, P., Antonelli, L., Atzeni, S., Badziak, J., Baffigi, F., Batani, D., Cecchetti, C.A., Chodukowski, T., Consoli, F., Cristoforetti, G., Deangelis, R., Folpini, G., Gizzi, L.A., Kalinowska, Z., Krousky, E., Kucharik, M., Labate, L., Levato, T., Liska, R., Malka, G., Maheut, Y., Marocchino, A., O'Dell, T., Parys, P., Pisarczyk, T., Raczka, P., Renner, O., Rhee, Y.J., Ribeyre, X., Richetta, M., Rosinski, M., Ryc, L., Skala, J., Schiavi, A., Schurtz, G., Smid, M., Spindloe, C., Ullschmied, J., Wolowski, J. & Zaras, A. (2013). Recent results from experimental studies on laser-plasma coupling in a Shock Ignition relevant regime. Plasma Phys. Controll. Fusion 55, 124045.Google Scholar
Laboratory for Laser Energetics (2012). Shock ignition experiments with planar targets on Omega. LLE Rev. 131, 137142.Google Scholar
Lebo, G., Demchenko, N.N., Iskakov, A.B., Limpouch, J., Rozanov, V.B. & Tishkin, V.F. (2004). Simulation of high-intensity laser – plasma interactions by use of the 2D Lagrangian code ATLANT-HE. Laser Part. Beams 22, 267273.CrossRefGoogle Scholar
Pisarczyk, T., Gus'kov, S.YU., Kalinowska, Z., Badziak, J., Batani, D., Antonelli, L., Folpini, G., Maheut, Y., Baffigi, F., Borodziuk, S., Chodukowski, T., Cristoforetti, G., Demchenko, N.N., Gizzi, L.A., Kasperczuk, A., Koester, P., Krousky, E., Labate, L., Parys, P., Pfeifer, M., Renner, O., Smid, M., Rosinski, M., Skala, J., Dudzak, R., Ullschmied, J. & Pisarczyk, P. (2014). Pre-plasma effect on energy transfer from laser beam to shock wave generated in solid target. Phys. Plasmas 21, 012708.CrossRefGoogle Scholar
Pisarczyk, T., Gus'kov, S.YU., Renner, O., Demchenko, N.N., Kalinowska, , Chodukowski, T., Rosinski, M., Parys, P., Smid, M., Dostal, J., Badziak, J., Batani, D., Volpe, L., Krousky, E., Dudzak, , Ullschmied, J., Turcicova, H., Hrebickj, J., Medrik, T., Pfeifer, M., Skala, J., Zaras-Szydlowska, A., Antonelli, L., Maheut, Y., Borodziuk, S., Kasperczuk, A. & Pisarczyk, P. (2015). Pre-plasma effect on laser beam energy transfer to a dense target under conditions relevant to shock ignition. Laser Part. Beams 33, 221.Google Scholar
Ribeyre, X., Schurtz, G., Lafon, M., Galera, S. & Weber, S. (2009). Shock ignition: Modelling and target design robustness. Plasma Phys. Controll. Fusion 51, 015013.Google Scholar
Scherbakov, V.A. (1983). On the expediency of making double pulse lasers for laser thermonuclear fusion. Sov. J. Plasma Phys. 9, 240.Google Scholar
Smid, M., Antonelli, L. & Renner, O. (2013). X-ray spectroscopic characterization of shock-ignition-relevant plasmas. Acta Polytech. 53, 233.Google Scholar
Theobald, W., Betti, R., Stoeckl, C., Aanderson, K.S., Delettrez, J.A., Glebov, V.YU., Goncharov, V.N., Marshall, F.J., Maywar, D.N., Mccrory, R.L., Meyerhofer, D.D., Radha, P.B., Sangster, T.C., Seka, W., Shvarts, D., Smalyuk, V.A., Solodov, A.A., Yaakobi, B., Zhou, C.D., Frenje, J.A., Li, C.K., Siguin, F.H., Petrasso, R.D. & Perkins, L.J. (2008). Initial experiments on the shock-ignition inertial confinement fusion concept. Phys. Plasmas 15, 056306.Google Scholar
Theobald, W., Nora, R., Lafon, M., Casner, A., Ribeyre, X., Anderson, K.S., Betti, R., Delettrez, J.A., Frenje, J.A., Glebov, V.YU., Gotchev, O.V., Hohenberger, M., Hu, S.X., Marshall, F.J., Meyerhofer, D.D., Sangster, T.C., Schurtz, G., Seka, W., Smalyuk, V.A., Stoeckl, C. & Yaakobi, B. (2012). Spherical shock-ignition experiments with the 40 + 20-beam configuration on OMEGA. Phys. Plasmas 19, 102706.Google Scholar