Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T04:37:39.418Z Has data issue: false hasContentIssue false

Self-similar Langmuir collapse at critical dimension

Published online by Cambridge University Press:  09 March 2009

L. Bergé
Affiliation:
G.I.L.M.T.-Centre de Physique Atomique de Toulouse, U.R.A. 277 du C.N.R.S., Université P. Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France
PH. Dousseau
Affiliation:
G.I.L.M.T.-Centre de Physique Atomique de Toulouse, U.R.A. 277 du C.N.R.S., Université P. Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France
G. Pelletier
Affiliation:
G.I.L.M.T.-Centre de Physique Atomique de Toulouse, U.R.A. 277 du C.N.R.S., Université P. Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France
D. Pesme
Affiliation:
G.I.L.M.T.-Centre de Physique Atomique de Toulouse, U.R.A. 277 du C.N.R.S., Université P. Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France

Abstract

Two spherically symmetric versions of a self-similar collapse are investigated within the framework of the Zakharov equations, namely, one relative to a vectorial electric field and the other corresponding to a scalar modeling of the Langmuir field. Singular solutions of both of them depend on a linear time contraction rate Ξ(t) = V(t*t), where t* and V = – Ξ denote, respectively, the collapse time and the constant collapse velocity. We show that under certain conditions, only the scalar model admits self-similar solutions, varying regularly as a function of the control parameter V from the subsonic (V ≪ 1) to the supersonic (V ≫ 1) regime.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bergé, L. et al. 1990 Phys. Rev. A 42, 4952.CrossRefGoogle Scholar
Degtyarev, L. M., Zakharov, V. E. & Rudakov, L. I. 1975 Zh. Eksp. Teor. Fiz. 68, 115[Sov. Phys. JETP 41, 57].Google Scholar
Galeev, A. A. et al. 1975 Fiz. Plazmy 1, 10 [Sov. J. Plasma Phys. 1, 5].Google Scholar
Gol'tsman, V. L. & Fraiman, G. M. 1980 Fiz. Plazmy 6, 838 [Sov. J. Plasma Phys. 6, 457].Google Scholar
Rudakov, L. I. & Tsytovitch, V. N. 1978 Phys. Rep. 40, 1.CrossRefGoogle Scholar
Zakharov, V. E. 1972 Zh. Eksp. Teor. Fiz. 62, 1745 [Sov. Phys. JETP 35, 908].Google Scholar
Zakharov, V. E., Mastryukov, A. F. & Synakh, V. S. 1975 Fiz. Plazmy 1, 614 [Sov. J. Plasma Phys. 1, 339].Google Scholar
Zakharov, V. E. & Shur, L. N. 1981 Zh. Eksp. Teor. Fiz. 81, 2019 [Sov. Phys. JETP 54, 1064].Google Scholar