Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T07:35:06.814Z Has data issue: false hasContentIssue false

Self-consistent dynamics of electromagnetic pulses and wakefields in laser-plasma interactions

Published online by Cambridge University Press:  04 October 2011

A. Bonatto*
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
R. Pakter
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
F.B. Rizzato
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
*
Address correspondence and reprint requests to: A Bonatto, Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, Rio Grande do Sul, Brasil. E-mail: [email protected]

Abstract

In the present analysis we study the time dependent, self-consistent propagation of nonlinear electromagnetic pulses in plasmas. Interactions of the electromagnetic pulses and wakefields are fully taken into account, from which one obtains accurate information on pulse time dependent dynamics and stability. While wide pulses may or may not retain the localized shape depending on their power, narrower pulses always tend to delocalize as time evolves.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bingham, R. (2003). Accelerator physics — In the wake of success. Nature 424, 258.CrossRefGoogle ScholarPubMed
Bonatto, A., Pakter, R. & Rizzato, F.B. (2005). Nonlinear dynamics of electromagnetic pulses in cold relativistic plasmas. J. Plasma Phys. 424, 258.Google Scholar
Duda, B.J. & Mori, W.B. (2000). Variational principle approach to short-pulse laser-plasma interactions in three dimensions. Phys. Rev. E 61, 1925.CrossRefGoogle ScholarPubMed
Esarey, E., Hafizi, B., Hubbard, R. & Ting, A. (1998). Trapping and acceleration in self-modulated laser wakefields. Phys. Rev. Lett. 80, 5552.CrossRefGoogle Scholar
Farina, F. & Bulanov, S.V. (2001). Relativistic electromagnetic solitons in the electron-ion plasma. Phys. Rev. Lett. 86, 5289.CrossRefGoogle ScholarPubMed
Gibbon, P. (2007). Short Laser Pulses Interactions with Matter. London: Imperial College Press.Google Scholar
Joshi, C. & Katsouleas, T. (2003). Plasma accelerators at the energy frontier and on tabletops. Phys. Today 56, 47.CrossRefGoogle Scholar
Kozlov, V.A., Litvak, A.G. & Suvorov, E.V. (1979). Envelope solitons of relativistically strong electromagnetic waves. Zh. Eksp. Teor. Fiz 76, 148.Google Scholar
Luttikhof, M.J.H., Khachatryan, A.G., van Goor, F.A., Boller, K.-J. & Mora, P. (2009) Electron bunch injection at an angle into a laser wakefield. Laser Part. Beams 27, 69.CrossRefGoogle Scholar
Mendonça, J.T. (2001). Theory of Photon Accelerator. Bristol: IOP Publishing.CrossRefGoogle Scholar
Mofiz, U.A. & de Angelis, U. (1985). Nonlinear propagation and localization of intense electromagnetic waves in relativistic plasmas. J. Plasma Phys. 33, 107.CrossRefGoogle Scholar
Nunes, R.P., Pakter, R., Rizzato, F.B., Endler, A. & Souza, E.G. (2009). Relaxation of intense inhomogeneous charged beams. Phys. Plasmas 16, 033107.CrossRefGoogle Scholar
de Oliveira, G.I., Rizzato, F.B. & Chian, A.C.-L. (1995). Length scale, quasi-periodicity, resonances, separatrix crossings, and chaos in the weakly relativistic Zakharov equations. Phys. Rev. E 52, 2025.CrossRefGoogle Scholar
Poornakala, S., Das, A., Sen, A. & Kaw, P.K. (2002). Laser envelope solitons in cold overdense plasmas. Phys. Plasmas 9, 1820.CrossRefGoogle Scholar
Rizzato, F.B., Oliveira, G.I. & Chian, A.C.-L. (2003). Nonlinear stability of solitons against strong external perturbations. Phys. Rev. E 67, 047601.CrossRefGoogle ScholarPubMed
Shukla, P.K., Rao, N.N., Yu, M.Y. & Tsintsadze, N.L. (1986). Relativistic nonlinear effects in plasmas. Phys. Letts. 138, 1.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron-accelerator. Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar