Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-09T13:30:31.408Z Has data issue: false hasContentIssue false

Resonance line reabsorption in a laser-produced plasma showing specific deviations from axial symmetry

Published online by Cambridge University Press:  09 March 2009

R.W. John
Affiliation:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Rudower Chaussee 6, 0–1199 Berlin, Germany
W. Brunner
Affiliation:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Rudower Chaussee 6, 0–1199 Berlin, Germany

Abstract

To predict the gain in a lasing transition in ions of a laser-produced plasma, it is essential to calculate the amount of the reabsorption of radiation emitted in the transition from the lower laser level to the ground state. An important quantity influencing the reabsorption is the plasma geometry as resulting from the design of the laser and target system. Modeling a nonaxially symmetrical geometry of the plasma arising from a target irradiated by line-focused laser beams, we consider the plasma in the form of a longitudinally cut-out circular cylinder, with central angle ø, and the length of the plasma much larger than its transversal extension. Accounting for the effect of resonance line trapping via the escape probability approach, and taking the absorption profile in the line center approximation, an explicit formula for the photon escape probability depending on the radial and angular coordinates of an interior point in the plasma is derived. This function is averaged over the angular variable to obtain an only radially varying mean escape probability.

Type
Regular Papers
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I.A., eds. 1964 Handbook of Mathematical Functions (Dover Publications, New York).Google Scholar
Biberman, L.M. 1948 Dokl. Akad. Nauk SSSR 59, 659.Google Scholar
Brunner, W. & John, R.W. 1991a Laser Particle Beams 9, 817.CrossRefGoogle Scholar
Brunner, W. & John, R.W. 1991b In Proceedings of the 21st European Conference on Laser Interaction with Matter, Warsaw, by Fiedorowicz, H. et al. , eds. (Institute of Plasma Physics and Laser Microfusion, Warsaw), p. 305.Google Scholar
Brunner, W. & John, R.W. 1992a In Laser Interaction and Related Plasma Phenomena, Vol. 10, Miley, G.H. and Hora, H., eds. (Plenum Press, New York and London) p. 105.CrossRefGoogle Scholar
Brunner, W. & John, R.W. 1992b In X-Ray Lasers 1992, Fill, E.E., ed. Institute of Physics Conference Series 125 (IOP Publishing Ltd., Bristol, UK) p. 287.Google Scholar
Brunner, W. et al. 1992 Plasma Phys. Control. Fusion 34, 263.CrossRefGoogle Scholar
Chandrasekhar, S. 1950 Radiative Transfer (Oxford University Press, London).Google Scholar
Eder, D.C. 1989 Phys. Fluids B 1, 2462.CrossRefGoogle Scholar
Grande, M. et al. 1990 Optics Comm. 74, 309.CrossRefGoogle Scholar
Griem, H.R. 1964 Plasma Spectroscopy (McGraw-Hill, New York).Google Scholar
Heaslet, M.A. & Warming, R.F. 1966 J. Quant. Spectrosc. Radiat. Transf. 6, 751.CrossRefGoogle Scholar
Holstein, T. 1947 Phys. Rev. 72, 1212.CrossRefGoogle Scholar
Holstein, T. 1951 Phys. Rev. 83, 1159.CrossRefGoogle Scholar
Irons, F.E. 1979 J. Quant. Spectrosc. Radiat. Transf. 22, 1.CrossRefGoogle Scholar
Li, Y.L. et al. 1990 Phys. Rev. A 41, 4528.CrossRefGoogle Scholar
Mewe, R. 1970 Z. Naturforsch. 25a, 1798.CrossRefGoogle Scholar
Pert, G.J. 1991 In X-Ray Lasers 1990, Tallents, G.J., ed. Institute of Physics Conference Series 116 (IOP Publishing Ltd., Bristol, UK), p. 143.Google Scholar
Pert, G.J. & Rose, S.J. 1990 Appl. Phys. B 50, 307.CrossRefGoogle Scholar
Shestakov, A.I. & Eder, D.C. 1989 J. Quant. Spectrosc. Radiat. Transf. 42, 483.CrossRefGoogle Scholar
Suckewer, S. & Ilcisin, K. 1991 In X-Ray Lasers 1990, Tallents, G.J., ed. Institute of Physics Conference Series 116 (IOP Publishing Ltd., Bristol, UK), p. 51.Google Scholar
Yariv, A. 1975 Quantum Electronics (John Wiley, New York), 2nd Ed.Google Scholar