Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T18:43:28.213Z Has data issue: false hasContentIssue false

A relativistic PIC model of nonlinear laser absorption in a finite-size plasma with arbitrary mass and density ratios

Published online by Cambridge University Press:  23 July 2015

H. Mehdian*
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
A. Kargarian
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
A. Hasanbeigi
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
K. Hajisharifi
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
*
Address correspondence and reprint requests to: H. Mehdian, Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran. E-mail: [email protected]; [email protected]

Abstract

In this paper, we have studied the nonlinear laser absorption in a finite-size plasma, using a fully kinetic relativistic 1½-dimensional particle-in-cell simulation code, and shown that the rate in which laser absorption increases depends on the mass ratio (δ = m+/m) and the equilibrium density ratio (α = n0+/n0− = z/z+), respectively. This can be attributed to the essential effects of these parameters on the nonlinear phenomena related to the laser absorption such as phase-mixing and laser-scattering process. We have indicated that the reduction of the defined mass and density ratios increases the absorption rate in the finite-size plasma as long as the laser scattering from the plasma is not considerable. Moreover, the study of kinetic phase-space distributions indicates in a specific range of mass and density ratios a large amount of laser energy leads to arise a population of charged particles having directed kinetic energy along the laser direction. These simulation results are expected to be relevant to the experiments on the intense laser–plasma interactions with applications to the particle acceleration and fast ignition concept as well as to the astrophysical environments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bulanov, S.V., Esirkepov, T. Z., Kando, M., Kogal, J. K., Hosokai, T., Zhidkov, A.G. & Kodama, R. (2013). Nonlinear plasma wave in magnetized plasmas. Phys. Plasmas 20, 083113.CrossRefGoogle Scholar
Desilva, A.W., Baig, T.J., Olivares, I. & Kunze, H.J. (1992). The effects of impurity ions on the scattered light spectrum of a plasma. Phys. Fluids B 4, 458.CrossRefGoogle Scholar
Glenzer, S.H., Rozmus, W., Macgowan, B.J., Estabrook, K.G., De Groot, J.D., Zimmerman, G.B. & Wilson, B.G. (1999). Thomson scattering from high-Z laser-produced plasmas. Phys. Plasmas 82, 97.Google Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects. Laser Part. Beams 27, 207222.CrossRefGoogle Scholar
Infeld, E., Rowlands, G. & Torven, S. (1989). Ion density cavities can cause nonlinear plasma oscillations to peak. Phys. Rev. Lett. 62, 2269.CrossRefGoogle ScholarPubMed
Lebedev, S.V., Chittenden, J.P., Beg, F.N., Bland, S.N., Ciardi, A., Ampleford, D. & Gardiner, T. (2002). Laboratory astrophysics and collimated stellar outflows: the production of radiatively cooled hypersonic plasma jets. Astrophys. J. 564, 113.CrossRefGoogle Scholar
Kasparek, W. & Holzhauer, E. (1983). CO 2-laser scattering from thermal fluctuations in a plasma with two ion components. Phys. Rev. A 27, 1737.CrossRefGoogle Scholar
Klimo, O., Psikal, J., Limpouch, J., Proska, J., Novotny, F., Ceccotti, T. & Kawata, S. (2011). Short pulse laser interaction with micro-structured targets: simulations of laser absorption and ion acceleration. New J. Phys. 13, 053028.CrossRefGoogle Scholar
Klimo, O., Weber, S., Tikhonchuk, V.T. & Limpouch, J. (2010). Particle-in-cell simulations of laser? plasma interaction for the shock ignition scenario. Plasma Phys. Control. Fusion 52, 055013.CrossRefGoogle Scholar
Kumar, A., Pandey, B.K. & Tripathi, V.K. (2010). Charged particle acceleration by electron Bernstein wave in a plasma channel. Laser Part. Beams 28, 409414.CrossRefGoogle Scholar
Maity, C. (2014). Phase-mixing of Langmuir oscillations in cold electron-positron-ion plasmas. Phys. Plasmas 21, 072317.CrossRefGoogle Scholar
Maity, C., Chakrabarti, N. & Sengubta, S. (2012). Wave breaking phenomenon of lower-hybrid oscillations induced by a background inhomogeneous magnetic field. Phys. Plasmas 19, 102302.CrossRefGoogle Scholar
Maity, C., Chakrabarti, N. & Sengubta, S. (2013 a). Phase-mixing of electrostatic modes in a cold magnetized electron–positron plasma. Phys. Plasmas 20, 082302.CrossRefGoogle Scholar
Maity, C., Sarka, A., Shukla, P. & Chakrabarti, N. (2013 b). Wave-breaking phenomena in a relativistic magnetized plasma. Phys. Rev. Lett. 110, 215002.CrossRefGoogle Scholar
Mehdian, H., Kargarian, A. & Hajisharifi, K. (2014 a). Spatiotemporal evolution of a thin plasma foil with Kappa distribution. Laser Part. Beams 32, 523529.CrossRefGoogle Scholar
Mehdian, H., Kargarian, A. & Hajisharifi, K. (2015). Kinetic (particle-in-cell) simulation of nonlinear laser absorption in a finite-size plasma with a background inhomogeneous magnetic field. Phys. Plasmas 22, 063102.CrossRefGoogle Scholar
Mehdian, H., Kargarian, A., Hajisharifi, K. & Hasanbeigi, A. (2014 b). Spatiotemporal study of the relativistic nonlinear effects on laser absorption by a finite-size magneto plasma. Eur. Phys. J. D 68, 17.CrossRefGoogle Scholar
Mizuta, A., Yamada, S. & Takabe, H. (2002). Numerical analysis of jets produced by intense laser. Astrophys. J. 567, 635.CrossRefGoogle Scholar
Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Malka, V., Darrow, C.B., Danson, C., Neely, D. & Walsh, F.N. (1995). Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606.CrossRefGoogle Scholar
Mulser, P. & Schnabl, H. (1983). Excitation of large amplitude electron plasma waves by laser. Laser Part. Beams 1, 379394.CrossRefGoogle Scholar
Pramanik, S., Maity, C. & Chakrabarti, N. (2014). Wave breaking of nonlinear electron oscillations in a warm magnetized plasma. Phys. Plasmas 21, 022308.CrossRefGoogle Scholar
Sakai, K., Miyazaki, S., Kawata, S., Hasumi, S. & Kikuchi, T. (2006). High-energy-density attosecond electron beam production by intense short-pulse laser with a plasma separator. Laser Part. Beams 24, 321327.CrossRefGoogle Scholar
Sarkar, A., Maity, C. & Chakrabarti, N. (2013). Phase mixing of upper hybrid oscillations in a cold inhomogeneous plasma placed in an inhomogeneous magnetic field. Phys. Plasmas 20, 052301.CrossRefGoogle Scholar
Sengupta, S. & Kaw, P.K. (1999) Phase mixing of nonlinear plasma oscillations in an arbitrary mass ratio cold plasma. Phys. Rev. Lett. 82, 1867.CrossRefGoogle Scholar
Sengupta, S., Kaw, P., Saxena, V., Sen, A. & Das, A. (2011). Phase mixing/wave breaking studies of large amplitude oscillations in a cold homogeneous unmagnetized. Plasma Phys. Control. Fusion 53, 074014.CrossRefGoogle Scholar
Sengupta, S., Saxena, V., Kaw, P.K., Sen, A. & Das, A. (2009) Phase mixing of relativistically intense waves in a cold homogeneous plasma. Phys. Rev. E 79, 026404.CrossRefGoogle Scholar
Shigemori, K., Kodama, R., Farley, D.R., Koase, T., Estabrook, K.G., Remington, B.A. & Turner, N. (2000). Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets. Phys. Rev. E 62, 8838.CrossRefGoogle ScholarPubMed
Singh, A. & Gupta, N. (2014). Higher harmonic generation by self-focused q-Gaussian laser beam in preformed collisionless plasma channel. Laser Part. Beams 32, 621629.CrossRefGoogle Scholar
Stone, J.M. & Hardee, P.E. (2000). Magnetohydrodynamic models of axisymmetric protostellar jets. Astrophys. J. 540, 192.CrossRefGoogle Scholar
Verma, P.S., Sengubta, S. & Kaw, P. (2012). Breaking of longitudinal Akhiezer–Polovin waves. Phys. Rev. Lett. 108, 125005.CrossRefGoogle ScholarPubMed
Tan, W. & Liu, C.S. (1992). Raman and Brillouin scattering in the filaments in laser-irradiated plasma. Laser Part. Beams 10, 10151022.CrossRefGoogle Scholar