Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T15:00:49.671Z Has data issue: false hasContentIssue false

Radiation dynamics of fast heavy ions interacting with matter

Published online by Cambridge University Press:  02 June 2005

O.N. ROSMEJ
Affiliation:
Gesellschaft für Schwerionenforschung, GSI, Department of Plasma Physics, Darmstadt, Germany
S.A. PIKUZ
Affiliation:
Institute for High Energy Density, Russian Academy of Sciences, Moscow, Russia
S. KOROSTIY
Affiliation:
Gesellschaft für Schwerionenforschung, GSI, Department of Plasma Physics, Darmstadt, Germany
A. BLAZEVIC
Affiliation:
Technical University, Darmstadt, Germany
E. BRAMBRINK
Affiliation:
Technical University, Darmstadt, Germany
A. FERTMAN
Affiliation:
Institute of Experimental and Theoretical Physics, Moscow, Russia
T. MUTIN
Affiliation:
Institute of Experimental and Theoretical Physics, Moscow, Russia
V.P. EFREMOV
Affiliation:
Institute for High Energy Density, Russian Academy of Sciences, Moscow, Russia
T.A. PIKUZ
Affiliation:
Multicharged Ions Spectra Data Center, All Russian Institute of Technical Physics, Mendeleevo, Russia
A.YA. FAENOV
Affiliation:
Multicharged Ions Spectra Data Center, All Russian Institute of Technical Physics, Mendeleevo, Russia
P. LOBODA
Affiliation:
Russian Federal Nuclear Center, All Russian Institute of Technical Physics, Chelyabinsk, Russia
A.A. GOLUBEV
Affiliation:
Institute of Experimental and Theoretical Physics, Moscow, Russia
D.H.H. HOFFMANN
Affiliation:
Gesellschaft für Schwerionenforschung, GSI, Department of Plasma Physics, Darmstadt, Germany Technical University, Darmstadt, Germany

Abstract

The study of heavy ion stopping dynamics using associated K-shell projectile and target radiation was the focus of the reported experiments. Ar, Ca, Ti, and Ni projectile ions with the initial energies of 5.9 and 11.4 MeV/u were slowed down in quartz and arogels. Characteristic radiation of projectiles and target atoms induced in close collisions was registered. The variation of the projectile ion line Doppler shift due to the ion deceleration measured along the ion beam trajectory was used to determine the ion velocity dynamics. The dependence of the ion velocity on the trajectory coordinate was measured over 70–90% of the ion beam path with a spatial resolution of 50–70 μm. The choice of SiO2 aerogel with low mean densities of 0.04–0.15 g/cm3 as a target material, made it possible to stretch the ion stopping range by more than 20–50 times in comparison with solid quartz. It allowed for resolving the dynamics of the ion stopping process. Experimentally, it has been proven that the fine porous nano-structure of aerogels does not affect the ion energy loss and charge state distribution. The strong increase of the ion stopping range in aerogels made it possible to resolve fast ion radiation dynamics. The analysis of the projectile Kα-satellites structure allows supposing that ions propagate in solid in highly exicted states. This can provide an experimental explanation for so called gas-solid effect.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anholt, R. (1985). Atomic collisions with relativistic heavy ions. II. Light-ion charge states. Phys. Rev. A 31, 3579.Google Scholar
Betz, H.D. & Grodzins, L. (1970). Charge states and excitation of fast heavy ions passing through solids: A new model for the density effect. Phys. Rev. Lett. 25, 211214.CrossRefGoogle Scholar
Bimbot, R., Cabot, C., Gardes, D., Gauvin, H., Hingmann, R., Orliange, I., De Reilhac, L. & Hubert, F. (1989). Stopping power of gases for heavy ions: Gas-solid effect: I.2-13 MeV/u Ne and Ar projectiles. NIM B 44, 118.Google Scholar
Bohr, N. & Lindhard, J. (1954). Electron capture and loss by heavy ions penetrating matter. Kgl. Dansk. Videskab, Mat.-Fys. Medd. 28.Google Scholar
Borisenko, N.G. & Merkuliev, Ya.A. (1996). Targets For Inertial Fusion. Proceedings of P.N. Lebedev Institute. New York: Nova Science.Google Scholar
Borisenko, N.G., Akunets, A.A., Bushuev, V.S., Dorogotovtsev, V.M. & Merkuliev, Yu.A. (2003). Motivation and fabrication methods for inertial confinement fusion and inertial fusion energy targets. Laser Part. Beams 21, 505509.Google Scholar
Dolgoleva, G.V., Dovgaya, N.I., Nechpai, V.I., Kechin, V.I., Pevnaya, P.I., Sizova, L.I. & Knolin, S.A. (2003). Disk converter target. Laser Part. Beams 21, 4751.Google Scholar
Demidov, B.A., Efremov, V.P., Ivkin, M.V., Ivonin, I.A., Petrov, V.A. & Fortov, V.E. (1998). Determination of the dynamic characteristics of aerogels in the energy-release zone of a high-power electron beam. Zhurnal Teknicheskoi Fiziki 43, 12391246.Google Scholar
Dietrich, K.-G., Hoffmann, D.H.H., Boggasch, E., Jacoby, J., Wahl, H., Elfers, M., Haas, C.R., Dubenkov, V.P. & Golubev, A.A. (1992). Charge state of fast heavy ions in a hydrogen plasma. Phys. Rev. Lett. 69, 36233626.CrossRefGoogle Scholar
Geissel, H., Laichter, Y., Schneider, W.F.W. & Ambruster, P. (1982). Observation of a gas-solid difference in the stopping powers of 1–10 MeV/u heavy ions. Phys. Lett. 88, 26.CrossRefGoogle Scholar
Hasegawa, J., Yokaya, N., Kobayashi, Y., Yoshida, M., Kojima, M., Sasaki, T., Fukuda, H., Ogawa, M., Oguri, Y. & Murakami, T. (2003). Stopping power of dense helium plasma for fast heavy ions. Laser Part. Beams 21, 712.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, in printCrossRefGoogle Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy loss of heavy ions in a plasma target. Phys. Rev. A 42, 23132321.CrossRefGoogle Scholar
Faenov, A.Yu., Pikuz, S.A., Erko, A.I, Bryunetkin, I.A., Dyakin, V.M., Ivanenkov, G.V., Mingaleev, A.R., Pikuz, T.A., Romanova, V.M. & Shelkovenko, T.A. (1994). High-performance x-ray spectroscoopic devices for plasma microsources investigations. Phys. Scr. 50, 333.CrossRefGoogle Scholar
Kaufmann, R.L., Jamison, K.A., Gray, T.J. & Richard, P. (1976). Heavy-ion-produced high-resolution Si-K-x-ray spectra from a gas and solid. Phys. Rev. Lett. 36, 1074.CrossRefGoogle Scholar
Kawata, S., Someya, T., Nakamura, T., Miyazaki, S., Shimizu, K. & Ogoyski, A.I. (2003). Heavy ion beam final transport through an insulator guide in heavy ion fusion. Laser Part. Beams 21, 2732.Google Scholar
Lassen, N.O. (1951). The Total Charges of Fission Fragments in Gaseous and Solid Stopping Media. Kgl. Dansk Videskab, Mat.-Fys. Medd 26.Google Scholar
Mintsev, V., Gryaznov, V., Kulish, M., Filimonov, A., Fortov, V., Sharkov, B., Golubev, A., Fertman, A., Turtikov, V., Kozodaev, A., Hoffmann, D.H.H., Funk, U. & Stoewe, S. (1999). Stopping power of proton beam in non-ideal plasma. Contrib. Plasma Phys. 37, 101.Google Scholar
Peter, T. & Meyer-ter-Vehn, J. (1991). Energy loss of a heavy ions in dense plasma. II. Nonequilibrium charge states and stopping powers. Phys. Rev. A 43, 20152030.CrossRefGoogle Scholar
Rosmej, O.N., Wieser, J., Geissel, M., Rosmej, F., Blazevic, A., Jacoby, J., Dewald, E., Roth, M., Brambrink, E., Weyrich, K., Hoffmann, D.H.H., Pikuz, T.A., Faenov, A.Ya., Magunov, A.I., Skobelev, I.Yu., Borisenko, N.G., Shevelko, V.P., Golubev, A.A., Fertman, A., Turtikov, V. & Sharkov, B.Yu. (2002). X-ray spectromicroscopy of fast heavy ions and target radiation. NIM A 495, 29.CrossRefGoogle Scholar
Rosmej, O.N., Pikuz_Jr., S.A., Wieser, J., Blazevic, A., Brambrink, E., Roth, M., Efremov, V.P., Faenov, A.Ya., Pikuz, T.A., Skobelev, T.Yu. & Hoffmann, D.H.H. (2003). Investigation of the projectile ion velocity inside the interaction media by the x-ray spectromicroscopy method. Rev. Sci. Instrum. 74, 5039.CrossRefGoogle Scholar
Roth, M., Stöckl, C., Süss, W., Iwase, O., Gericke, O., Bock, R., Hoffmann, D.H.H., Geissel, M. & Seelig, W. (2000). Energy loss of heavy ions in laser-produced plasmas. Europhys. Lett. 50, 2834.Google Scholar
Shevelko, V.P., Rosmej, O.N., Tawara, H. & Tostikhina, I.Yu. (2004). Target-density effect in electron–capture process. J. Phys.B 37, 201.Google Scholar
Shima, K., Kuno, N., Yamanouchi, M. & Tawara, H. (1992). Equilibrium fraction of ions of Z = 4-92 emerging from a carbon foil. AD NDT 51, 173.Google Scholar
Tahir, N.A., Shutov, S., Varentsov, D., Spiller, P., Udrea, S., Hoffmann, D.H.H., Lomonosov, I.V., Wieser, J., Kirk, M., Piriz, R., Fortov, V.E. & Bock, R. (2003). The influence of the equation of state of matter and ion beam characteristics on target heating and compression. Phys. Rev. Spec. Top. 6, 020101.Google Scholar