Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T21:11:40.478Z Has data issue: false hasContentIssue false

Quasi-monoenergetic proton beam generation from a double-layer solid target using an intense circularly polarized laser

Published online by Cambridge University Press:  17 July 2009

J.H. Bin
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
A.L. Lei*
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
X.Q. Yang
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
L.G. Huang
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
M.Y. Yu
Affiliation:
Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China
Wei Yu
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
K.A. Tanaka
Affiliation:
Graduate School of Engineering, Osaka University, Osaka, Japan
*
Address correspondence and reprint requests to: Anle Lei, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China. E-mail: [email protected]

Abstract

Monoenegetic ion beam generation from circularly polarized laser-pulse interaction with a double-layer target is considered. The front layer consists of heavy-ion plasma, and the rear layer is a small thin coating of light-ion plasma. Particle-in-cell simulation shows that the multi-dimensional effects in the ion radiation pressure acceleration are avoided and a highly monoenergetic light-ion beam can be produced. Our simulations reveal that the charge-mass ratio of heavy ions in the front layer and the thicknesses of both layers can strongly affect the proton energy spectra.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., Mackinnon, A.J., Hicks, D., Patel, P., Gizzi, L.A., Galimberti, M. & Clarke, R.J. (2002). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275.CrossRefGoogle Scholar
Breschi, E., Borghesi, M., Campbell, D.H., Galimberti, M., Giulietti, D., Gizzi, L.A., Romagnani, L., Schiavi, A. & Willi, O. (2004). Spectral and angular characterization of laser-produced proton beams from dosimetric measurements. Laser Part. Beams 22, 393397.CrossRefGoogle Scholar
Cobble, J.A., Johnson, R.P., Cowan, T.E., Renard-LeGalloudec, N. & Allen, M. (2002). High resolution laser-driven proton radiography. J. Appl. Phys. 92, 17751779.CrossRefGoogle Scholar
Davis, J. & Petrov, G.M. (2009). Generation of GeV ion bunches from high-intensity laser-target interactions. Phys. Plasma 16, 023105.Google Scholar
Esirkepov, T.Zh., Bulanov, S.V., Nishihara, K., Tajima, T., Pegoraro, F., Khoroshkov, V.S., Mima, K., Daido, H., Kato, Y., Kitagawa, Y., Nagai, K. & Sakabe, S. (2002). Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett. 89, 175003.Google Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.Google Scholar
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernandez, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nat. 439, 441444.CrossRefGoogle ScholarPubMed
Kado, M., Daido, H., Fukumi, A., Li, Z., Orimo, S., Hayashi, Y., Nishiuchi, M., Sagisaka, A., Ogura, K., Mori, M., Nakamura, S., Noda, A., Iwashita, Y., Shirai, T., Tongu, H., Takeuchi, T., Yamazaki, A., Itoh, H., Souda, H., Nemoto, K., Oishi, Y., Nayuki, T., Kiriyama, H., Kanazawa, S., Aoyama, M., Akahane, Y., Inoue, N., Tsuji, K., Nakai, Y., Yamamoto, Y., Kotaki, H., Kondo, S., Bulanov, S., Esirkepov, T., Utsumi, T., Nagashima, A., Kimura, T. & Yamakawa, K. (2006). Observation of strongly collimated proton beam from tantalum targets irradiated with circular polarized laser pulses. Laser Part. Beams 24, 117123.CrossRefGoogle Scholar
Khoroshkov, V.S. & Minakova, E.I. (1998). Proton beams in radiotherapy. Eur. J. Phys. 19, 523536.Google Scholar
Klimo, O., Psikal, J., Limpouch, J. & Tikhonchuk, V.T. (2008). Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. ST AB 11, 031301.Google Scholar
Kraft, G. (2001). What we can learn from heavy ion therapy for radioprotection in space. Phys. Medica. 17, 1320.Google ScholarPubMed
Krushelnick, K., Clark, E.L., Allott, R., Beg, F.N., Danson, C.N., Machacek, A., Malka, V., Nakmudin, Z., Neely, D., Norreys, P.A., Salvati, M.R., Santala, M.I.K., Tatarakis, M., Watts, I., Zepf, M. & Dangor, A.E. (2000). Ultrahigh-intensity laser-produced plasmas as a compact heavy ioninjection source. IEEE Trans. Plasma Sci. 28, 11841189.CrossRefGoogle Scholar
Linz, U. & Alonso, J. (2007). What will it take for laser driven proton accelerations to be applied to tumor therapy. Phys. Rev. ST AB 10, 094801.Google Scholar
Liseikina, T.V. & Macchi, A. (2007). Features of ion acceleration by circularly polarized laser pulses. Appl. Phys. Lett. 91, 171502.CrossRefGoogle Scholar
Macchi, A., Cattani, F., Liseykina, T.V. & Cornolti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003.CrossRefGoogle ScholarPubMed
Malka, V., Fritzler, S., Lefebvre, E., d'Humieres, E., Ferrand, R., Grillon, G., Albaret, C., Meyroneinc, S., Chambaret, J.P., Antonetti, A. & Hulin, D. (2004). Practicability of protontherapy using compact laser systems. Med. Phys. 31, 15871592.CrossRefGoogle ScholarPubMed
Nickles, P.V., Ter-Avetisyan, S., Schnürer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiment in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.Google Scholar
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10, 013021.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brownl, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Schwoerer, H., Pfotenhauer, S., Jackel, O., Amthor, K.-U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K.W.D. & Esirkepov, T. (2006). Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nat. 439, 445448.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasma 8, 542549.Google Scholar
Xu, H., Chang, W.W., Zhuo, H.B., Cao, L.H. & Yue, Z.W. (2002). Parallel programming of 2(1/2)-dimensional pic under distributed-memory parallel environments. Chin. J. Comput. Phys. 19, 305310.Google Scholar
Yan, X.Q., Lin, C., Sheng, Z.M., Guo, Z.Y., Liu, B.C., Lu, Y.R., Fang, J.X. & Chen, J.E. (2008). Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett. 100, 135003.CrossRefGoogle ScholarPubMed
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Phys. Rev. ST AB 24, 291298.Google Scholar
Yin, L., Albright, B.J., Hegelich, B.M., Bowers, K.J., Flippo, K.A., Kwan, T.J.T. & Fernandez, J.C. (2007). Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasma 14, 056706.Google Scholar
Yin, Y., Wei, Y., Yu, M.Y., Lei, A.L., Yang, X.Q., Xu, H. & Senecha, V.K. (2008). Influence of target thickness on the generation of high-density ion bunches by ultrashort circularly polarized laser pulses. Phys. Plasma 15, 093106.CrossRefGoogle Scholar
Yogo, A., Sato, K., Nishikino, M., Mori, M., Teshima, T., Numasaki, H., Murakami, M., Demizu, Y., Akagi, S., Nagayama, S., Ogura, K., Sagisaka, A., Orimo, S., Nishiuchi, M., Pirozhkov, A.S., Ikegami, M., Tampo, M., Sakaki, H., Suzuki, M., Daito, I., Oishi, Y., Sugiyama, H., Kiriyama, H., Okada, H., Kanazawa, S., Kondo, S., Shimomura, T., Nakai, Y., Tanoue, M., Sasao, H., Wakai, D., Bolton, P.R. & Daido, H. (2009). Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Appl. Phys. Lett 94, 181502.Google Scholar
Zhang, X.M., Shen, B.F., Li, X.M., Jin, Z.Y., Wang, F.C. & Wen, M. (2007). Efficient GeV ion generation by ultraintense circularly polarized laser pulse. Phys. Plasma 14, 123108.Google Scholar