Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T01:05:16.806Z Has data issue: false hasContentIssue false

Proton stopping in plasmas considering e–e collisions

Published online by Cambridge University Press:  28 November 2006

M.D. BARRIGA-CARRASCO
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
A.Y. POTEKHIN
Affiliation:
Ioffe Physical-Technical Institute, St. Petersburg, Russia

Abstract

The purpose of the present paper is to describe the effects of electron-electron collisions on proton electronic stopping in plasmas of any degeneracy. Plasma targets are considered fully ionized so electronic stopping is only due to the free electrons. The stopping due to free electrons is obtained from an exact quantum mechanical evaluation in the random phase approximation, which takes into account the degeneracy of the target plasma. The result is compared with common classical and degenerate approximations. Differences are around 30% in some cases which can produce bigger mistakes in further energy deposition and projectile range studies. We focus our analysis on plasmas in the limit of weakly coupled plasmas then electron-electron collisions have to be considered. Differences with the same results without taking into account collisions are more than 50%.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arista, N.R. & Brandt, W. (1984). Dielectric response of quantum plasmas in thermal equilibrium. Phys. Rev. A 29, 14711480.CrossRefGoogle Scholar
Arnold, R.C. & Meyer-ter-Vehn, Y. (1987). Inertial confinement fusion driven by heavy-ion beams. Rep. Prog. Phys. 50, 559606.CrossRefGoogle Scholar
Barriga-Carrasco, M.D. & Garcia-Molina, R. (2004). Simulation of the energy spectra of original versus recombined H2+ molecular ions transmitted through thin foils. Phys. Rev. A 70, 032901 (8).Google Scholar
Barriga-Carrasco, M.D. (2006a). Effects of target plasma electron-electron collisions on correlated motion of fragmented H2+ protons. Phys. Rev. E 73, 026401 (6).Google Scholar
Barriga-Carrasco, M.D. (2006b). Influence of target plasma nuclei collisions on correlated motion of fragmented H2+ protons. Laser Part. Beams 24, 211216.Google Scholar
Barriga-Carrasco, M.D. & Maynard, G. (2006). Plasma electron-electron collision effects in proton self-retarding and vicinage forces. Laser Part. Beams 24, 5560.Google Scholar
Braginskii, S.I. (1957). Transport phenomena in a completely ionized double-temperature plasma. Zh. Eksp. Teor. Fiz. 33, 459.Google Scholar
Deutsch, C. (1984). Atomic physics for beam-target interactions. Laser Part. Beams 2, 449465.CrossRefGoogle Scholar
Deutsch, C., Maynard, G., Bimbot, R., Gardes, D., Dellanegra, S., Dumail, M., Kubica, B., Richard, A., Rivet, M.F., Servajean, A., Fleurier, C., Sanba, A., Hoffmann, D.H.H., Weyrich, K. & Wahl, H. (1989). Ion beam-plasma interaction—A standard model approach. Nuc. Instr. Meth. Phys. Res. A 278, 3843.CrossRefGoogle Scholar
Deutsch, C. (1990). Interaction of ion cluster beams with cold matter and dense-plasmas. Laser Part. Beams 8, 541553.CrossRefGoogle Scholar
Deutsch, C. (1992). Ion cluster interaction with cold targets for ICF—Fragmentation and stopping. Laser Part. Beams 10, 217226.CrossRefGoogle Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Eliezer, S., Martinez-Val, J.M. & Deutsch, C. (1995). Inertial fusion-targets driven by cluster ion-beam: The hydrodynamic approach. Laser Part. Beams 13, 4369.CrossRefGoogle Scholar
Flowers, E. & Itoh, N. (1976). Transport properties of dense matter. Astrophys. J. 206, 218242.CrossRefGoogle Scholar
Fried, B.D. & Conte, S.D. (1961). The Plasma Dispersion Functions. New York: Academic.
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy-loss of heavy-ions in a plasma target. Phys. Rev. A 42, 23132321.Google Scholar
Hoffmann, D.H.H., Jacoby, J., Laux, W., Demagistris, M., Boggasch, E., Spiller, P., Stockl, C., Tauschwitz, A., Weyrich, K., Chabot, M. & Gardes, D. (1994). Energy-loss of fast heavy-ions in plasmas. Nuc. Instr. Meth. Phys. Res. B 90, 19.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hubbard, W. & Lampe, M. (1969). Thermal conduction by electrons in stellar matter. Astrophys. J. Suppl. Ser. 18, 297346.Google Scholar
Jacoby, J., Hoffmann, DD.H., Laux, W., Muller, R.W., Wahl, H., Weyrich, K., Boggasch, E., Heimrich, B., Stockl, C., Wetzler, H. & Miyamoto, S. (1995). Stopping of heavy-ions in a hydrogen plasma. Phys. Rev. Lett. 74, 15501553.Google Scholar
Lindhard, J. (1954). On the properties of a gas of charged particles. K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 28.Google Scholar
Lampe, M. (1968a). Transport coefficients of degenerate plasma. Phys. Rev. 170, 306319.Google Scholar
Lampe, M. (1968b). Transport theory of a partially degenerate plasma. Phys. Rev. 174, 276280.Google Scholar
Mermin, N.D. (1970). Lindhard dielectric function in the relaxation-time approximation. Phys. Rev. B 1, 23622363.Google Scholar
Meyer-ter-Vehn, J., Witkowski, S., Bock, R., Hoffmann, D.D.H., Hofmann, I., Muller, R.W., Arnold, R. & Mulser, P. (1990). Accelerator and target studies for heavy-ion fusion at the gesellschaft-fur-schwerionenforschung. Phys. Fluids B-Plasma Phys. 2, 13131317.Google Scholar
Nardi, E., Fisher, D.V., Roth, M., Blazevic, A. & Hoffmann, D.H.H. (2006). Charge state of Zn projectile ions in partially ionized plasma: Simulations. Laser Part. Beams 24, 131141.Google Scholar
Neff, S., Knobloch, R., Hoffmann, D.H.H., Tauschwitz, A. & Yu, S.S. (2006). Transport of heavy-ion beams in a 1 m free-standing plasma channel. Laser Part. Beams 24, 7180.Google Scholar
Peter, Th. & Meyer-ter-Vehn, J. (1991). Energy loss of heavy ions in dense plasma. I. Linear and nonlinear Vlasov theory for the stopping power. Phys. Rev. A 43, 19982014.Google Scholar
Potekhin, A. Y., Chabrier, G. & Yakovlev, D. G. (1997). Internal temperatures and cooling of neutron stars with accreted envelopes. Astron. Astrophys. 323, 415428.Google Scholar
Potekhin, A.Y., Baiko, D.A., Haensel, P. & Yakovlev, D.G. (1999). Transport properties of degenerate electrons in neutron star envelopes and white dwarf cores. Astron. Astrophys. 346, 345353.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W. Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D., &Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.Google Scholar
Spitzer, L. (1961). Physics of Fully Ionized Gases. New York: Interscience Publishers.
Timmes, F.X. (1992). On the thermal conductivity due to collisions between relativistic degenerate electrons. Astrophys. J. 390, L107109.Google Scholar
Urpin, V.A. & Yakovlev, D.G. (1980). Thermal conductivity due to collisions between electrons in a relativistic, degenerate, electron gas. Sov. Astron. 24, 126127.Google Scholar