Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T17:12:01.287Z Has data issue: false hasContentIssue false

Proton activation history on the Vulcan high-intensity petawatt laser facility

Published online by Cambridge University Press:  29 August 2014

R.J. Clarke*
Affiliation:
Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, United Kingdom
S. Dorkings
Affiliation:
Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, United Kingdom
R. Heathcote
Affiliation:
Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, United Kingdom
K. Markey
Affiliation:
Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, United Kingdom
D. Neely
Affiliation:
Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, United Kingdom
*
Address correspondence and reprint requests to: Robert J Clarke, STFC Rutherford Appleton Laboratory, Experimental Science Group, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom. E-mail: [email protected]

Abstract

High-intensity lasers are an effective source for the acceleration of high-energy particles. Using different interaction configurations, such facilities can be optimized for the acceleration of electrons, protons, heavy ions, high-energy photons, or neutrons. The shielding of these facilities to ensure the safety of personnel has always been a critical requirement and is a fundamental step within the design phase. The knowledge of radiation source terms through both experiments and modelling is now well understood and for the most part can be dealt with through the use of shielding and specialized beam dumps. Unlike most other particle accelerators most high-power laser facilities are still accessed by personnel post shot with little or no remote handling capabilities. As a result, the secondary activation and control of components that lie around the interaction is of great importance to safety. In this paper, we present a 10 year history of activation data on the Vulcan petawatt facility and discuss the primary sources of activation and the potential impact on future laser facilities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azambuja, R., Eloy, M., Figueira, G. & Neely, D. (1999). Three dimensional characterisation of high density non cylindrical pulsed gas jets. J. Phys. D 32, L35L43.CrossRefGoogle Scholar
Brenner, C.M., Badziak, J., Batani, D., Davies, J.R., Deppert, O., Gray, R.J., Hassan, S.M., Lancaster, K.L., Li, K., Markey, K., Mckenna, P., Musgrave, I.O., Neely, D., Norreys, P.A., Pasley, J., Robinson, A.P.L., Rosinski, M., Roth, M., Schlenvoigt, H.-P., Scott, R.H.H., Spindloe, C., Tatarakis, M., Winstone, T., Wolowski, J. & Wyatt, D. (2014). High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets. Appl. Phys. Lett. 104, 081123.CrossRefGoogle Scholar
Carroll, D.C., Bandyopadhyay, S., Batani, D., Bellei, C., Evans, R.G., Kar, S., Li, Y.T., Lindau, F., Lundh, O., Markey, K., Mckenna, P., Neely, D., Pepler, D., Redaelli, R., Simpson, P.T., Wahlstrom, C.-G., Xu, M.H. & Zepf, M. (2008). Active manipulation on the spatial energy distribution of laser-accelerated proton beams. Phys. Rev. E 76, 065401(R).Google Scholar
Chekhlov, O.V., Bates, P.K., Cardoso, L., Collier, J.L., Danson, C.N., Hancock, S., Hernandez-Gomez, C., Matousek, P., Neely, D., Notley, M., Ross, I.N. & Shaikh, W. (2006). 35 J Boradband Femtosecond OPCPA System. Opt. Lett. 31, 3665.CrossRefGoogle Scholar
Clarke, R. J., Bellei, C., Carroll, D. C., Dromey, B., Green, J. S., Kneip, S., Markey, K., Mckenna, P., Murphy, W., Nagel, S., Simpson, P. T., Kar, S., Willingale, L. & Zepf, M. (2008). Nuclear activation as a high dynamic range diagnostic of laser-plasma interactions Nucl. Instru. Meth. Phys. Res. A 585, 117120.CrossRefGoogle Scholar
Clarke, R.J., Brummitt, P.A., Collier, J.L., Danson, C.N., Edwards, R.D., Hatton, P.E., Hawkes, S.J., Heathcote, R., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A. K., Ledingham, K.W.D., Lester, W.J., Mckenna, P., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Winstone, T.B., Wyatt, R.W.W., Wright, P.N.M. & Wyborn, B.E. (2006). Radiological characterisation of photon radiation from ultra high intensity laser plasma and nuclear interactions. J. Radiolog. Protection 26, 3, 277286.CrossRefGoogle ScholarPubMed
Guenther, M. M., Britz, A., Clarke, R. J., Harres, K., Hoffmeister, G., Nuernberg, F., Otten, A., Pelka, A., Roth, M. & Vogt, K. (2013). NAIS: Nuclear activation based imaging spectroscopy. Rev. Sci. Instru. 84, 073305.CrossRefGoogle Scholar
Hernandez-Gomez, C., Brummitt, P.A., Canny, D.J., Clarke, R.J., Collier, J., Danson, C.N., Dunne, A.M., Fell, B.A., Frackiewicz, J., Hancock, S.Hawkes, S., Heathcote, R., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, Wj., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C.J., Shaikh, W., Winstone, T.B. & Wyborn, B.E. (2006). Vulcan petawatt-operation and development. J. Phys. IV France 133, 555559.CrossRefGoogle Scholar
Kneip, S., Bellei, C., Cheklov, O., Clarke, R.J., Delerue, N., Divall, E.J., Doucas, G., Ertel, K., Fiuza, F., Fonseca, R., Foster, P., Hawkes, S. J., Heathcote, R., Hooker, C.J., Krushelnick, K., Mangles, S.P.D., Martins, S.F., Nagel, S.R., Najmudin, Z., Palmer, C.A. J., Phuoc, K..Ta, Rajeev, P., Schreiber, J., Silva, L.O., Streeter, M.J.V., Urner, D. & Vieira, J. (2011). Study of near-GeV acceleration of electrons in a non-linear Plasma wave driven by a self-guided laser pulse. Plasma Phys. Contr. Fusion 53, 014008.CrossRefGoogle Scholar
Ledingham, K.W.D., Allott, R., Beg, F.N., Clark, E., Clark, R.J.Cresswell, A.J., Dangor, A.E., Krushelnick, K., Machacek, A.C., Magill, J., Mccanny, T., Neely, D., Norreys, P.A., Sanderson, D.C.W., Santala, M.I.K., Singhal, Rp., Spencer, I., Tatarakis, M., Wark, J.S., Watts, I. & Zepf, M. (2000). Photonuclear physics when a multiterawatt laser pulse interacts with solid targets. Phys. Rev. Lett. 84, 5.CrossRefGoogle Scholar
Nuernberg, F., Blazevic, A., Brambrink, E., Carroll, D.C., Flippo, K., Gautier, D.C., Geissel, M., Harres, K., Hegelich, B.M., Lundh, O., Markey, K., Mckenna, P., Neely, D., Schollmeier, M., Schreiber, J., Roth, M. (2009). Radiochromic film imaging spectroscopy of laser accelerated proton beams. Rev. Sci. Instru. 80, 0333.Google Scholar
Robson, L., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., Mccanny, T., Mckenna, P., Mora, P., Neely, D., Simpson, P.T., Wahlstrom, C.-G. & Zepf, M. (2007). Scaling of proton acceleration driven by petawatt-laser-plasma interactions. Nature Phys. 3, 5862.CrossRefGoogle Scholar
Santala, M.I.K., Allott, R., Beg, F.N., Clark, E.L., Clarke, R.J., Dangor, A.E., Krushelnick, K., Ledingham, K.W.D., Machacek, A.C., Mccanny, T., Norreys, P.A., Spencer, I., Tatarakis, M., Watts, I. & Zepf, M. (2001). Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions. Appl. Phys. Lett. 78, 19.CrossRefGoogle Scholar
Yuan, X.H., Borghesi, M., Carroll, D.C., Clarke, R.J., Evans, R.G., Fuchs, J., Gallegos, P., Lancia, L., Mckenna, P., Neely, D., Robinson, A.P. L., Romagnani, L., Sarri, G., Quinn, K., Quinn, M.N. & Wilson, P.A. (2010). Effect of self generated magnetic fields on fast electron beam divergence in solid targets. New J. Phys. 12, 063018.CrossRefGoogle Scholar
Ziener, C., Divall, E.J., Foster, P.S., Hooker, C.J., Hutchinson, M.H.R., Langley, A.J. & Neely, D. (2003). Specular reflectivity of plasma mirrors as a function of intensity, pulse duration and angle of incidence. J. Appl. Phys. 93, 1.CrossRefGoogle Scholar