Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T17:59:05.809Z Has data issue: false hasContentIssue false

Proton acceleration by plasma wakefield driven by an intense proton beam

Published online by Cambridge University Press:  25 June 2013

Longqing Yi
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Baifei Shen*
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Liangliang Ji
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Xiaomei Zhang
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Wenpeng Wang
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Jiancai Xu
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Yahong Yu
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Xiaofeng Wang
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Yin Shi
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Zhizhan Xu
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
*
Address correspondence and reprint requests to: Baifei Shen, State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China. E-mail: [email protected]

Abstract

Plasma wakefield excited by a short TeV-scale proton beam is investigated in the highly nonlinear regime. Analysis of the “bubble” field illustrates that transverse expelling force of the wakefield can be compensated by the attractive force, which originates from the co-propagating electrons within the proton bunch, leading to a collimation effect that stabilizes the beam propagation. The protons located in the beam tail can be well-confined and accelerated forward for a long distance. Two-dimensional simulations show that after a 1-TeV proton bunch propagating through plasma for a distance, several percentages of the protons achieve a remarkable energy gain. This scheme presents a potential that proton beams from conventional accelerators may gain considerable additional energy through plasmas wakefields.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albright, B.J., Yin, L., Bowers, K.J., Hegelich, B.M., Flippo, K.A., Kwan, T.J.T. & Fernandez, J.C. (2007). Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasmas 14, 056706.Google Scholar
Albright, B.J., Yin, L., Hegelich, B.M., Bowers, K.J., Kwan, T.J.T. & Fernandez, J.C. (2006). Theory of laser acceleration of light-ion beams from interaction of ultrahigh-intensity lasers with layered targets. Phys. Rev. Lett. 97, 115002.CrossRefGoogle ScholarPubMed
Babu, P.S., Goswami, A. & Pandit, V.S. (2011). Envelope equations for cylindrically symmetric space charge dominated multi species beam. Phys. Plasmas 18, 103117.Google Scholar
Bane, K.L.F., Chen, P. & Wilson, P.B. (1985). On collinear wake field acceleration. IEEE Trans. Nuclear Sci. NS-32, 35243526.CrossRefGoogle Scholar
Blumenfeld, I., Clayton, C.E., Decker, F.J., Hogan, M.J., Huang, C.K., Ischebeck, R., Iverson, R., Joshi, C., Katsouleas, T., Kirby, N., Lu, W., Marsh, K.A., Mori, W.B., Muggli, P., Oz, E., Siemann, R.H., Walz, D. & Zhou, M.M. (2007). Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nat. 445, 741744.CrossRefGoogle Scholar
Caldwell, A. & Lotov, K.V. (2011). Plasma wakefield acceleration with a modulated proton bunch. Phys. Plasmas 18.CrossRefGoogle Scholar
Caldwell, A., Lotov, K, Pukhov, A. & Simon, F. (2009). Proton-driven plasma-wakefield acceleration. Nat. Phys. 5, 363367.CrossRefGoogle Scholar
Chen, M., Pukhov, A., Yu, T.P. & Sheng, Z.M. (2009). Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse. Phys. Rev. Lett. 103, 024801.CrossRefGoogle ScholarPubMed
Chen, P., Su, J.J., Katsouleas, T., Wilks, S. & Dawson, J.M. (1987). Plasma focusing for high-energy beams. IEEE Trans. Plasma Sci. 15, 218225.CrossRefGoogle Scholar
Davis, J. & Petrov, G.M. (2009). Generation of GeV ion bunches from high-intensity laser-target interactions. Phys. Plasmas 16, 023105.Google Scholar
Eliasson, B., Liu, C.S., Shao, X., Sagdeev, R.Z. & Shukla, P.K. (2009). Laser acceleration of monoenergetic protons via a double layer emerging from an ultra-thin foil. New J. Phys. 11, 073006.CrossRefGoogle Scholar
Esarey, E., Schroeder, C. & Leemans, W. (2009). Physics of laser-driven plasma-based electron accelerator. Rev. Mod. Phys. 81, 1229.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Gaillard, S.A., Kluge, T., Flippo, K.A., Bussmann, M., Gall, B., Lockard, T., Geissel, M., Offermann, D.T., Schollmeier, M., Sentoku, Y. & Cowan, T.E. (2011). Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets. Phys. Plasmas 18, 056710.CrossRefGoogle Scholar
Ji, L.L., Shen, B.F., Zhang, X.M., Wang, F.C., Jin, Z.Y., Li, X.M., Wen, M. & Cary, J.R. (2008). Generating monoenergetic heavy-ion bunches with laser-induced electrostatic shocks. Phys. Rev. Lett. 101, 164802.CrossRefGoogle ScholarPubMed
Ji, L.L., Shen, B.F., Zhang, X.M., Wang, F.C., Jin, Z.Y., Wen, M., Wang, W.P. & Xu, J.C. (2009). Comment on “generating high-current polarized laser pulse in the phase-stable acceleration regime.” Phys. Rev. Lett. 102, 239501.CrossRefGoogle Scholar
Joshi, C., Blue, B., Clayton, C.E., Dodd, E., Huang, C., Marsh, K.A., Mori, W.B., Wang, S., Hogan, M.J., O'Connell, C., Siemann, R., Watz, D., Muggli, P., Katsouleas, T. & Lee, S. (2002). High energy density plasma science with an ultrarelativistic electron beam. Phys. Plasmas 9, 1845.CrossRefGoogle Scholar
Kallos, E., Katsouleas, T., Kimura, W.D., Kusche, K., Muggli, P., Pavlishin, I., Pogorelsky, I., Stolyarov, D. & Yakimenko, V. (2008). High-gradient plasma-wakefield acceleration with two subpicosecond electron bunches. Phys. Rev. Lett. 100, 074802.CrossRefGoogle ScholarPubMed
Katsouleas, T. (1986). Physical mechanisms in the plasma wake-field accelerator. Phys. Rev. A 33, 20562064.CrossRefGoogle ScholarPubMed
Keinigs, R. & Jones, M.E., (1987). Two-dimensional dynamics of the plasma wakefield accelerator. Phys. Fluids 30, 252.CrossRefGoogle Scholar
Kimura, W.D., Milchberg, H.M., Muggli, P., Li, X. & Mori, W.B. (2011). Hollow plasma channel for positron plasma wakefield acceleration. Phys. Rev. Spec.Top. Accel. Beams 14, 041301.CrossRefGoogle Scholar
Krall, J., Joyce, G. & Esarey, E. (1991). Vlasov simulations of very-large-amplitude-wave generation in the plasma wake-field accelerator. Phys. Rev. A 44, 68546861.CrossRefGoogle ScholarPubMed
Kudryavtsev, A.M., Lotov, K.V. & Skrinsky, A.N. (1998). Plasma wake-field acceleration of high energies: Physics and perspectives. Nucl. Instrum. Meth. Phys. Res. Sect. A 410, 388CrossRefGoogle Scholar
Kumar, N., Pukhov, A. & Lotov, K. (2010). Self-modulation instability of a long proton bunch in plasmas. Phys. Rev. Lett. 104, 255003.CrossRefGoogle ScholarPubMed
Lee, S., Katsouleas, T., Hemker, R. & Mori, W.B. (2000). Simulations of a meter-long plasma wakefield accelerator. Phys. Rev. E 61, 70147021.CrossRefGoogle ScholarPubMed
Lee, S., Katsouleas, T., Hemker, R.G., Dodd, E.S. & Mori, W.B. (2001). Plasma-wakefield acceleration of a positron beam. Phys. Rev. E 64, 045501(R).CrossRefGoogle ScholarPubMed
Liseikina, T.V. & Macchi, A. (2007). Features of ion acceleration by circularly polarized laser pulses. Appl. Phys. Lett. 91, 171502.CrossRefGoogle Scholar
Liseykina, T.V., Borghesi, M., Macchi, A. & Tuveri, S. (2008). Radiation pressure acceleration by ultraintense laser pulses. Plasma Phys. Contr. Fusion 50, 124033.CrossRefGoogle Scholar
Lotov, K. (2003). Fine wakefield structure in the blowout regime of plasma wakefield accelerators. Phys. Rev. Spec. Top. Accel. Beams 6, 061301.CrossRefGoogle Scholar
Lotov, K.V. (1998). Simulation of ultrarelativistic beam dynamics in the plasma wake-field accelerator. Nucl. Instrum. Methods Phys. Res. Sect. A 410, 461468.CrossRefGoogle Scholar
Lotov, K.V. (2007). Acceleration of positrons by electron beam-driven wakefields in a plasma. Phys. Plasmas 14, 023101.CrossRefGoogle Scholar
Lotov, K.V. (2010). Simulation of proton driven plasma wakefield acceleration. Phys. Rev. Spec. Top. Accel. Beams 13, 041301.CrossRefGoogle Scholar
Lotov, K.V. (2011). Controlled self-modulation of high energy beams in a plasma. Phys. Plasmas 18, 024501.CrossRefGoogle Scholar
Lu, W., Huang, C., Zhou, M.M., Mori, W.B. & Katsouleas, T. (2005). Limits of linear plasma wakefield theory for electron or positron beams Phys. Plasmas 12, 063101.CrossRefGoogle Scholar
Macchi, A., Cattani, F., Liseykina, T.V. & Cornolti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003.CrossRefGoogle ScholarPubMed
Macchi, A., Veghini, S. & Pegoraro, F. (2009). “Light sail” acceleration reexamined. Phys. Rev. Lett. 103, 085003.CrossRefGoogle ScholarPubMed
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.CrossRefGoogle ScholarPubMed
Nieter, C. & Cary, J.R. (2004). VORPAL: A versatile plasma simulation code. J. Comput. Phys. 196, 448473.CrossRefGoogle Scholar
Poukey, J.W. (1969). Expansion of a plasma shell into a vacuum magnetic field. Phys. Fluids 12, 1452.CrossRefGoogle Scholar
Pukhov, A., Kumar, N., Tuckmantel, T., Upadhyay, A., Lotov, K., Muggli, P., Khudik, V., Siemon, C. & Shvets, G. (2011). Phase velocity and particle injection in a self-modulated proton-driven plasma wakefield accelerator. Phys. Rev. Lett. 107, 145003.CrossRefGoogle Scholar
Qiao, B., Zepf, M., Borghesi, M. & Geissler, M. (2009). Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses. Phys. Rev. Lett. 102, 145002.CrossRefGoogle ScholarPubMed
Qiao, B., Zepf, M., Borghesi, M., Dromey, B., Geissler, M., Karmakar, A. & Gibbon, P. (2010). Radiation-pressure acceleration of ion beams from nanofoil targets: The leaky light-sail regime. Phys. Rev. Lett. 105, 155002.CrossRefGoogle ScholarPubMed
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10, 013021.CrossRefGoogle Scholar
Rosenzweig, J. (1987). Nonlinear plasma dynanics in the plasma wakefield accelerator. IEEE Trans. Plasma Sci. 15, 186191.CrossRefGoogle Scholar
Rosenzweig, J.B., Breizman, B., Katsouleas, T. & Su, J.J. (1991). Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. Phys. Rev. A 44, R6189R6192.CrossRefGoogle ScholarPubMed
Schroeder, C.B., Benedetti, C., Esarey, E., Gruner, F.J. & Leemans, W.P. (2011). Growth and phase velocity of self-modulated beam-driven plasma waves. Phys. Rev. Lett. 107, 145002.CrossRefGoogle ScholarPubMed
Schwoerer, H., Pfotenhauer, S., Jackel, O., Amthor, K.U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K.W.D. & Esirkepov, T. (2006). Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nat. 439, 445448.CrossRefGoogle ScholarPubMed
Shen, B.F., Li, Y.L., Yu, M.Y. & Cary, J. (2007). Bubble regime for ion acceleration in a laser-driven plasma. Phys. Rev. E 76, 055402.CrossRefGoogle Scholar
Shen, B.F., Zhang, X.M., Sheng, Z.M., Yu, M.Y. & Cary, J. (2009). High-quality monoenergetic proton generation by sequential radiation pressure and bubble acceleration. Phys. Rev. Spec. Top. Accel. Beams 12, 121301.CrossRefGoogle Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945.CrossRefGoogle ScholarPubMed
Su, J.J., Katsouleas, T., Dawson, J.M. & Fedele, R. (1990). Plasma lenses for focusing particle beams. Phys. Rev. A 41, 33213331.CrossRefGoogle ScholarPubMed
Toncian, T., Borghesi, M., Fuchs, J., d'Humières, E., Antici, P., Audebert, P., Brambrink, E., Cecchetti, C.A., Pipahl, A., Romagnani, L. & Willi, O. (2006). Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons. Sci. 312, 410413.CrossRefGoogle ScholarPubMed
Tripathi, V.K., Liu, C.S., Shao, X., Eliasson, B. & Sagdeev, R.Z. (2009). Laser acceleration of monoenergetic protons in a self-organized double layer from thin foil. Plasma Phys. Controlled Fusion 51, 024014.CrossRefGoogle Scholar
Wang, X., Muggli, P., Katsouleas, T., Joshi, C., Mori, W.B., Ischebeck, R. & Hogan, M.J. (2009). Optimization of positron trapping and acceleration in an electron-beam-driven plasma wakefield accelerator. Phys. Rev. Spec. Top. Accel. Beams 12, 051303.CrossRefGoogle Scholar
Wilks, S., Katsouleas, T., Dawson, J.M., Chen, P. & Su, J.J. (1987). Beam loading in plasma waves. IEEE Trans. Plasma Sci. 15, 210.CrossRefGoogle Scholar
Xia, G., Caldwell, A., Lotov, K., Pukhov, A., Kumar, N., An, W., Lu, W., Mori, W.B., Joshi, C., Huang, C., Muggli, P., Assmann, R. & Zimmermann, F. (2010). AIP Conference Proceedings of 14th Advanced Accelerator Concepts Workshop, 1299, 510515.Google Scholar
Yan, X.Q., Lin, C., Sheng, Z.M., Guo, Z.Y., Liu, B.C., Lu, Y.R., Fang, J.X. & Chen, J.E. (2008). Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett. 100, 135003.CrossRefGoogle ScholarPubMed
Yan, X.Q., Wu, H.C., Sheng, Z.M., Chen, J.E. & Meyer-ter-Vehn, J. (2009). Self-organizing gev, nanocoulomb, collimated proton beam from laser foil interaction at 7 × 1021 W/cm2 (2009). Phys. Rev. Lett. 103, 135001.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Hegelich, B.M., Bowers, K.J., Flippo, K.A., Kwan, T.J.T. & Fernandez, J.C. (2007). Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasmas 14, 056706.CrossRefGoogle Scholar
Zhang, X.M., Shen, B.F., Ji, L.L., Wang, F.C., Jin, Z.Y., Li, X.M., Wen, M. & Cary, J.R. (2009). Ion acceleration with mixed solid targets interacting with circularly polarized lasers. Phys. Rev. Spec. Top. Accel. Beams 12, 021301.CrossRefGoogle Scholar
Zhang, X.M., Shen, B.F., Ji, L.L., Wang, F.C., Wen, M., Wang, W.P., Xu, J.C. & Yu, Y.H. (2010). Ultrahigh energy proton generation in sequential radiation pressure and bubble regime. Phys. Plasmas 17, 123102.Google Scholar
Zhang, X.M., Shen, B.F., Li, X.M., Jin, Z.Y. & Wang, F.C. (2007a). Efficient GeV ion generation by ultraintense circularly polarized laser pulse. Phys. Plasma 14, 123108Google Scholar
Zhang, X.M., Shen, B.F., Li, X.M., Jin, Z.Y.Wang, F.C. & Wen, M. (2007b). Multistaged acceleration of ions by circularly polarzed laers pluse: Monoenergy ion beam generation. Phys. Plasma 14, 073101.CrossRefGoogle Scholar