Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T16:58:58.909Z Has data issue: false hasContentIssue false

Production of a high-density, long scale-length iron plasma using a capillary discharge

Published online by Cambridge University Press:  09 March 2009

W.J. Blyth
Affiliation:
Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, 0X1 3PU, UK
N.C. Woolsey
Affiliation:
Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, 0X1 3PU, UK
J.S. Wark
Affiliation:
Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, 0X1 3PU, UK
P.E. Young
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
A. Zigler
Affiliation:
Hebrew University, Jerusalem
S.J. Rose
Affiliation:
Rutherford Appleton Laboratory, Chilton, Didcot OX11 OQX, UK,; and Department of Physics and Space Science, University of Birmingham, Birmingham B15 2TT, UK

Abstract

The production of a long scale-length plasma of electron density 1020–1021 cm-3, measuring 10 X 0.5 mm using a laser-heated capillary discharge is reported. X-ray spectroscopic measurements have been performed which show that the plasma constituents can be varied by changing the material that lines the exit slit of the device. The capillary thus provides a useful source of large underdense plasmas created from solid materials suitable for laser-plasma interaction studies. Numerical simulations consistent with spectroscopic studies suggest that temperatures up to about 700 eV were achieved following irradiation of these plasmas by high-power laser light.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ammosov, M.V. et al. 1986 Zh. Eksp. Teor. Fiz. 91, 2008;Google Scholar
Sov. Phys. JETP 64, 1191 (1986).Google Scholar
Boiko, V.A. et al. 1978 J. Quant. Spectrosc. Radiat. Transfer 19, 11.CrossRefGoogle Scholar
Brill, B. et al. 1990 J. Phys. D: Appl. Phys. 23, 1064.CrossRefGoogle Scholar
Burnett, N.H. & Enright, G.D. 1990 IEEE J. Quant. Electron. 26, 1797.Google Scholar
Burnett, N.H. et al. 1977 J. Appl. Phys. 48, 3727.CrossRefGoogle Scholar
Christiansen, J.P. et al. 1974 Comput. Phys. Comm. 7, 271.Google Scholar
Cobine, J.D. & Burger, E.E. 1955 J. App. Phys. 26, 895.Google Scholar
Darrow, C.B. et al. 1992 Phys. Rev. Lett. 69, 442.CrossRefGoogle Scholar
Desselberger, M. et al. 1992 Phys. Rev. Lett. 68, 1539.Google Scholar
Djaoui, A. & Rose, S.J. 1992 J. Phys. B: Atom. Molec. Opt. Phys. 25, 2745.CrossRefGoogle Scholar
Eder, D.C. et al. 1992 Phys. Rev. A 45, 6761.Google Scholar
Edison, N. et al. 1993 Phys. Rev. E 47, 1305.CrossRefGoogle Scholar
Gardner, J.H. et al. 1986 Phys. Fluids 29, 1304.Google Scholar
Grande, M. et al. 1990 Opt. Comm. 74, 5.Google Scholar
Henke, B.L. et al. 1986 J. Opt. Soc. Am. B 3, 1540.CrossRefGoogle Scholar
Lee, T.N. et al. 1987 Phys. Rev. Lett. 59(1), 185.Google Scholar
Leemans, W.P. et al. 1992 Phys. Rev. A 46, 1091.Google Scholar
Matthews, D.L. et al. 1985 Phys. Rev. Lett. 54, 110.CrossRefGoogle Scholar
Offenberger, A.A.et al. 1993 Proc. SPIE.Google Scholar
Penetrante, B.M. & Bardsley, J.N. 1991 Phys. Rev. A 43, 3100.Google Scholar
Peyraud, J. & Peyraud, N. 1972 J. Appl. Phys. 43, 2993.Google Scholar
Rae, S.C. & Burnett, K. 1990 Phys. Fluids B 2.CrossRefGoogle Scholar
Rosen, M.D. et al. 1987 Phys. Rev. A 36, 247.CrossRefGoogle Scholar
Rosenbluth, M.N. 1972 Phys. Rev. Lett. 29, 565.Google Scholar
Schlessinger, L. & Wright, J. 1979 Phys. Rev. A 20, 1934.Google Scholar
Simon, A. et al. 1986 Phys. Fluids 29, 1704.CrossRefGoogle Scholar
Tanaka, K. et al. 1982 Phys. Rev. Lett. 48, 1179.Google Scholar
Waynant, R.W. & Elton, R.C. 1976 Proc. IEEE 64, 1059.CrossRefGoogle Scholar
Willi, O. et al. 1989 Opt. Comm. 70, 487.Google Scholar
Zigler, A. et al. 1987 Phys. Rev. A. 35, 4446.Google Scholar