Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T05:50:49.307Z Has data issue: false hasContentIssue false

Practical, visible wavelength nuclear-pumped laser

Published online by Cambridge University Press:  09 March 2009

Y.R. Shaban
Affiliation:
University of Illinois at Urbana-Champaign, Fusion Studies Laboratory, Urbana, IL 61801
G.H. Miley
Affiliation:
University of Illinois at Urbana-Champaign, Fusion Studies Laboratory, Urbana, IL 61801

Abstract

A practical, visible nuclear-pumped laser (NPL) has been sought at the University of Illinois and other laboratories for a number of years. Yet, the results from successful visible NPLs to date have not been fully satisfactory, e.g., the threshold pumping power is too high for conventional applications. Progress in recent studies of 3He-Ne-H2 as a candidate NPL operating in the visible region at 585.3 nm on the 2P1,-1S2 Ne transition is described. We obtained lasing on the above transition for 3He-Ne-H2 concentrations of 1,140, 588, and 412 torr, respectively, with the laser cavity placed in the beamport of the University of Illinois TRIGA reactor. The threshold thermal neutron flux is 1014 n/cm2-s, corresponding to a threshold pumping power of 5 W/cm3.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akerman, M.A. et al. 1977 Appl. Phys. Lett.. 30, 409.CrossRefGoogle Scholar
Aleksandrov, A.A. et al. 1985 Sov. Phys. Dokl. 30, 875.Google Scholar
Aleksandrov, A.Y. et al. 1991 Sov. J. Quantum Electron. 21, 933.CrossRefGoogle Scholar
Basov, N.G. et al. 1985a JETP Lett. 41, 191.Google Scholar
Basov, N.G. et al. 1985b Sov. Tech. Phys. Lett. 11, 181.Google Scholar
Batyrbekov, G.A. et al. 1990 Sov. J. Quantum Electron. 20, 1084.CrossRefGoogle Scholar
Bunkin, F.V. et al. 1987 Kvantovaya Elektron. 32, 43.Google Scholar
Bunkon, F.V. et al. 1986 Izvest. Akad. Nauk SSSR. Ser. Fiz. 50, 1064.Google Scholar
Carter, B.D. et al. 1980 Appl. Phys. Lett. 36, 115.CrossRefGoogle Scholar
Chebotayev, V.P. 1965 Radio Eng. Electron. Phys. 10, 316.Google Scholar
Chebotayev, V.P. & Pokasov, V.V. 1965 Radio Eng. Electron Phys. 10, 817.Google Scholar
Cherrington, B.E. 1979 Gaseous Electronics and Gas Lasers (Pergamon Press, New York), p. 186.Google Scholar
Derzhiev, V.I. et al. 1988 Kvantovaya Elektron. 16, 108.Google Scholar
Derzhiev, V.I. et al. 1989 Sov. J. Quantum Electron. 19, 1016.CrossRefGoogle Scholar
Elsayed-Ali, H.E. & Hays, G.N. 1990 Appl. Phys. Lett. 57, 2175.CrossRefGoogle Scholar
Ladenburg, R. & Dorgela, H.B. 1925 Physica 5, 90.Google Scholar
Latush, E.L. et al. 1990 Kvantovaya Elektron 17, 1418.Google Scholar
Massey, S.H. 1979 Atomic and Molecular Collisions (Taylor & Francis Ltd., London).Google Scholar
Miley, G.H. 1992 In Proceedings of U.S.-Japan Seminar on Physics of High Power Laser Matter Interactions (Kyoto, Japan), p. 77.Google Scholar
Prelas, M.A. & Schlapper, G.A. 1981 J. Appl. Phys. 5, 496.CrossRefGoogle Scholar
Schmieder, D. et al. 1981 Optics Comm..36, 223.CrossRefGoogle Scholar
Soramoto, S.K. et al. 1991 Nucl. Instrum. Meth. Phys. Res.. 306, 524.CrossRefGoogle Scholar
Willet, C.S. 1974 Introduction to Gas Lasers: Population Inversion Mechanisms (Pergamon Press, New York), p. 102.CrossRefGoogle Scholar