Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T07:30:06.190Z Has data issue: false hasContentIssue false

Plasma-filled diode with a rod anode for repetitive pulsed X-ray sources

Published online by Cambridge University Press:  26 September 2016

B.M. Kovalchuk
Affiliation:
Siberian Division of Russian Academy of Science, Institute of High Current Electronics, Tomsk, Russia
A.A. Zherlitsyn*
Affiliation:
Siberian Division of Russian Academy of Science, Institute of High Current Electronics, Tomsk, Russia Department of High Voltage Electrophysics and High Current Electronics, National Research Tomsk Polytechnic University, Tomsk, Russia
N.V. Tsoy
Affiliation:
Siberian Division of Russian Academy of Science, Institute of High Current Electronics, Tomsk, Russia
*
Address correspondence and reprint requests to: A.A. Zherlitsyn, Siberian Division of Russian Academy of Science, Institute of High Current Electronics, 2/3 Academichesky Avenue, 634055, Tomsk, Russia. E-mail: [email protected]

Abstract

The paper presents a cylindrical diode with a rod anode for repetitive pulsed intense X-ray sources. The diode uses a massive anode of diameter 1 cm, thus increasing the lifetime of the energy converter. The diode gap is preliminary filled with ions produced by cathode flare in a vacuum discharge, allowing electron beam pinching at a voltage of <200 kV. In the mode of pinching, the diode is an efficient source of high-power X rays. At a distance of 20 cm from the X-ray source, the radiation dose per pulse is 0.4 R at a peak power of 7 × 106 R/s. The full-width at half-maximum of the radiation pulse is 40 ns. The power in the diode is 1.8 GW at a beam current of 10 kA and exceeds the maximum power of the generator operating onto a matched load with constant resistance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berger, M.J. & Seltzer, S.M. (1970). Bremsstrahlung and photoneutrons from thick tungsten and tantalum targets. Phys. Rev. C 2, 621631.Google Scholar
Bolotov, A.V., Kozyrev, A.V., Kolesnikov, A.V., Korolev, Yu.D., Rabotkin, V.G. & Shemyakin, I.A. (1991). Cutoff of the current in a low-pressure pulsed discharge initiated by forced cathode spot ignition. Sov. Zh. Tekh. Fiz. 61, 4046.Google Scholar
Cai, D., Liu, L., Ju, J., Zhao, X. & Qiu, Y. (2014). Observation of a U-like shaped velocity evolution of plasma expansion during a high-power diode operation. Laser Part. Beams 32, 443447.Google Scholar
Cai, D., Liu, L., Ju, J., Zhao, X., Zhou, H. & Wang, X. (2016). Characterization of a short-pulse high-power diode operated with anode effects. Laser Part. Beams 34, 151162.Google Scholar
Cooperstein, G., Boller, J.R., Commisso, R.J., Hinshelwood, D.D., Mosher, D., Ottinger, P.F., Schumer, J.W., Stephanakis, S.J., Swanekamp, S.B., Weber, B.V. & Young, F.C. (2001). Theoretical modeling and experimental characterization of a rod-pinch diode. Phys. Plasmas 8, 46184636.Google Scholar
Danko, S.A., Dolgachev, G.I. & Ushakov, A.G. (2005). An X-ray converter of a megavolt electron beam for powerful pulsed generators. Instrum. Exp. Tech. 48, 339348.Google Scholar
Filatov, A.L., Kotov, Yu.A., Mesyats, G.A. & Sokovnin, S.Yu. (1989). A 5·107 A/kg dose rate compact X-ray generator. Laser Part. Beams 7, 755761.Google Scholar
Ivanov, S.A. & Shchukin, G.A. (1989). X-ray Tubes for Technical Purposes (Dolgopolova, Yu.V., Ed.). Leningrad: Energoatomizdat.Google Scholar
Kirikov, A.V., Belomyttsev, S.Ya., Ryzhov, V.V., Turchanovsky, I.Yu. & Tarakanov, V.P. (2003). Condition for magnetic insulation of the electron beam in a rod-pinch diode. Laser Part. Beams 21, 273277.CrossRefGoogle Scholar
Kovalchuk, B.M., Kharlov, A.V., Vizir, V.A., Kumpyak, E.V., Zorin, V.B. & Kiselev, V.N. (2010). High-voltage pulsed generator for dynamic fragmentation of rocks. Rev. Sci. Instrum. 81, 103506.Google Scholar
Kozyrev, A.V., Kozhevnikov, V.Y., Vorobyov, M.S., Baksht, E.K., Burachenko, A.G., Koval, N.N. & Tarasenko, V.F. (2015). Reconstruction of electron beam energy spectra for vacuum and gas diodes. Laser Part. Beams 33, 183192.Google Scholar
Langmuir, I. & Blodgett, K. (1923). Currents between coaxial cylinders. Phys. Rev. 22, 347356.CrossRefGoogle Scholar
Li, L., Liu, L., Xu, Q., Chen, G., Chang, L., Wan, H. & Wen, J. (2009). Relativistic electron beam source with uniform high-density emitters by pulsed power generators. Laser Part. Beams 27, 335344.CrossRefGoogle Scholar
Mahaffey, R.A., Golden, J., Goldstein, S.A. & Cooperstein, G. (1978). Intense electron-beam pinch formation and propagation in rod pinch diode. Appl. Phys. Lett. 33, 795797.Google Scholar
Mesyats, G.A., Korovin, S.D., Gunin, A.V., Gubanov, V.P., Stepchenko, A.S., Grishin, D.M., Landl, V.F. & Alekseenko, P.I. (2003). Repetitively pulsed high-current accelerators with transformer charging of forming lines. Laser Part. Beams 21, 197209.Google Scholar
Ottinger, P.F., Goldstein, S.A. & Meger, R.A. (1984). Theoretical modeling of the plasma erosion opening switch for inductive storage applications. J. Appl. Phys. 56, 774784.Google Scholar
Ozur, G.E., Proskurovsky, D.I., Rotshtein, V.P. & Markov, A.B. (2003). Production and application of low-energy, high-current electron beams. Laser Part. Beams 21, 157174.Google Scholar
Sharkov, B.Yu., Hoffmann, D.H.H., Golubev, A.A. & Zhao, Y. (2016). High energy density physics with intense ion beams. Matter Radiat. Extremes 1, 2847.Google Scholar
Stygar, W.A., Cuneo, M.E., Headley, D.I., Ives, H.C., Leeper, R.J., Mazarakis, M.G., Olson, C.L., Porter, J.L., Wagoner, T.C. & Woodworth, J.R. (2007). Architecture of petawatt-class z-pinch accelerators. Phys. Rev. ST Accel. Beam 10, 030401.Google Scholar
Swanekamp, S.B., Commisso, R.J., Cooperstein, G., Ottinger, P.F. & Schumer, J.W. (2000). Particle-in-cell simulations of high-power cylindrical electron beam diodes. Phys. Plasmas 7, 52145222.Google Scholar
Weber, B.V., Apruzese, J.P., Mosher, D., Phipps, D.G., Schumer, J.W. & Stephanakis, S.J. (2013). High energy-density plasma dynamics in plasma-filled rod-pinch diodes. Proc. 19th IEEE Pulsed Power Conf., pp. 316–321. San Francisco, USA.Google Scholar
Weber, B.V., Commisso, R.J., Hinshelwood, D.D., Mosher, D., Ottinger, P.F., Ponce, D.M., Schumer, J.W., Stephanakis, S.J., Strasburg, S.D., Swanekamp, S.B. & Young, F.C. (2004). Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode. Phys. Plasmas 11, 29162927.Google Scholar